simplified dimension handling

This commit is contained in:
Martin Diehl 2015-10-14 18:45:33 +00:00
parent 46564d3df8
commit bdfd9c69bb
1 changed files with 98 additions and 72 deletions

View File

@ -40,7 +40,7 @@ def runFit(exponent, eqStress, dimension, criterion):
N_simulations=0 N_simulations=0
s=threading.Semaphore(1) s=threading.Semaphore(1)
myLoad = Loadcase(options.load[0],options.load[1],options.load[2], myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = dimension, vegter = options.vegter) nSet = 10, dimension = dimension, vegter = options.criterion=='vegter')
stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
@ -269,11 +269,16 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
vegter = Vegter(refPts, refNormals) vegter = Vegter(refPts, refNormals)
def Tresca(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False): def Tresca(eqStress=None, #not needed/supported
paras=None,
sigmas=None,
mFix=None, #not needed/supported
criteria=None, #not needed/supported
dim=3,
Jac=False):
''' '''
Tresca yield criterion Tresca yield criterion
the fitted parameters is: paras(sigma0) the fitted parameters is: paras(sigma0)
eqStress, mFix, criteria, dim are invalid input
''' '''
if not Jac: if not Jac:
lambdas = principalStresses(sigmas) lambdas = principalStresses(sigmas)
@ -284,7 +289,13 @@ def Tresca(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
else: else:
return -np.ones(len(sigmas)) return -np.ones(len(sigmas))
def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False): def Cazacu_Barlat(eqStress=None,
paras=None,
sigmas=None,
mFix=None,#not needed/supported
criteria=None,
dim=3, #2D also possible
Jac=False):
''' '''
Cazacu-Barlat (CB) yield criterion Cazacu-Barlat (CB) yield criterion
the fitted parameters are: the fitted parameters are:
@ -338,7 +349,13 @@ def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
else: else:
return np.vstack((ja1,ja2,ja3,ja4,ja5,ja6,jb1,jb2,jb3,jb4,jb5,jb6,jb7,jb8,jb9,jb10,jb11,jc)).T return np.vstack((ja1,ja2,ja3,ja4,ja5,ja6,jb1,jb2,jb3,jb4,jb5,jb6,jb7,jb8,jb9,jb10,jb11,jc)).T
def Drucker(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False): def Drucker(eqStress=None,#not needed/supported
paras=None,
sigmas=None,
mFix=None, #not needed/supported
criteria=None,
dim=3,
Jac=False):
''' '''
Drucker yield criterion Drucker yield criterion
the fitted parameters are the fitted parameters are
@ -375,38 +392,52 @@ def Drucker(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
if mFix[0]: return np.vstack((-r/sigma0, -drdl*J3_2p)).T if mFix[0]: return np.vstack((-r/sigma0, -drdl*J3_2p)).T
else: return np.vstack((-r/sigma0, -drdl*J3_2p, jp)).T else: return np.vstack((-r/sigma0, -drdl*J3_2p, jp)).T
def Hill1948(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False): def Hill1948(eqStress=None,#not needed/supported
paras=None,
sigmas=None,
mFix=None, #not needed/supported
criteria=None,#not needed/supported
dim=3,
Jac=False):
''' '''
Hill 1948 yield criterion Hill 1948 yield criterion
the fitted parameters are: the fitted parameters are:
F, G, H, L, M, N for 3D F, G, H, L, M, N for 3D
F, G, H, N for 2D F, G, H, N for 2D
eqStress, mFix, criteria are invalid input
''' '''
s11,s22,s33,s12,s23,s31 = sigmas s11,s22,s33,s12,s23,s31 = sigmas
if dim == 2: # plane stress if dim == 2: # plane stress
jac = np.array([ s22**2, s11**2, (s11-s22)**2, 2.0*s12**2]) jac = np.array([ s22**2, s11**2, (s11-s22)**2, 2.0*s12**2])
else: # general case else: # general case
jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2]) jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2])
if not Jac: if not Jac:
return (np.dot(paras,jac)/2.0-0.5).ravel() return (np.dot(paras,jac)/2.0-0.5).ravel()
else: else:
return jac.T return jac.T
def Hill1979(eqStress,paras, sigmas, mFix, criteria, dim, Jac = False): def Hill1979(eqStress=None,#not needed/supported
paras=None,
sigmas=None,
mFix=None,
criteria=None,#not needed/supported
dim=3,
Jac=False):
''' '''
Hill 1979 yield criterion Hill 1979 yield criterion
the fitted parameters are: f,g,h,a,b,c,m the fitted parameters are: f,g,h,a,b,c,m
criteria are invalid input
''' '''
if mFix[0]: m = mFix[1]
else: m = paras[-1] if mFix[0]:
m = mFix[1]
else:
m = paras[-1]
coeff = paras[0:6] coeff = paras[0:6]
s1,s2,s3 = principalStresses(sigmas) s = principalStresses(sigmas)
# s= principalStresses(sigmas) diffs = np.array([s[1]-s[2], s[2]-s[0], s[0]-s[1],\
diffs = np.array([s2-s3, s3-s1, s1-s2, 2.0*s1-s2-s3, 2.0*s2-s3-s1, 2.0*s3-s1-s2])**2 2.0*s[0]-s[1]-s[2], 2.0*s[1]-s[2]-s[0], 2.0*s[2]-s[0]-s[1]])**2
#diffs = np.array([s[1]-s[2], s[2]-s[0], etc ... s1-s2, 2.0*s1-s2-s3, 2.0*s2-s3-s1, 2.0*s3-s1-s2])**2
diffsm = diffs**(m/2.0) diffsm = diffs**(m/2.0)
left = np.dot(coeff,diffsm) left = np.dot(coeff,diffsm)
r = (0.5*left)**(1.0/m)/eqStress #left = base**mi r = (0.5*left)**(1.0/m)/eqStress #left = base**mi
@ -420,7 +451,13 @@ def Hill1979(eqStress,paras, sigmas, mFix, criteria, dim, Jac = False):
if mFix[0]: return np.vstack((drdl*diffsm)).T if mFix[0]: return np.vstack((drdl*diffsm)).T
else: return np.vstack((drdl*diffsm, jm)).T else: return np.vstack((drdl*diffsm, jm)).T
def Hosford(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False): def Hosford(eqStress=None,
paras=None,
sigmas=None,
mFix=None,
criteria=None,
dim=3,
Jac=False):
''' '''
Hosford family criteria Hosford family criteria
the fitted parameters are: the fitted parameters are:
@ -444,8 +481,8 @@ def Hosford(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
if mFix[0]: a = mFix[1] if mFix[0]: a = mFix[1]
else: a = paras[3] else: a = paras[3]
s1,s2,s3 = principalStresses(sigmas) s = principalStresses(sigmas)
diffs = np.array([s2-s3, s3-s1, s1-s2])**2 diffs = np.array([s[1]-s[2], s[2]-s[0], s[0]-s[1]])**2
diffsm = diffs**(a/2.0) diffsm = diffs**(a/2.0)
left = np.dot(coeff,diffsm) left = np.dot(coeff,diffsm)
r = (0.5*left)**(1.0/a)/sigma0 r = (0.5*left)**(1.0/a)/sigma0
@ -465,7 +502,13 @@ def Hosford(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
if mFix[0]: return np.vstack((drdl*diffsm)).T if mFix[0]: return np.vstack((drdl*diffsm)).T
else: return np.vstack((drdl*diffsm, ja)).T else: return np.vstack((drdl*diffsm, ja)).T
def Barlat1989(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False): def Barlat1989(eqStress=None,
paras=None,
sigmas=None,
mFix=None,
criteria=None,
dim=3,
Jac=False):
''' '''
Barlat-Lian 1989 yield criteria Barlat-Lian 1989 yield criteria
the fitted parameters are: the fitted parameters are:
@ -856,98 +899,98 @@ fitCriteria = {
'tresca' :{'name': 'Tresca', 'tresca' :{'name': 'Tresca',
'func': Tresca, 'func': Tresca,
'nExpo': 0,'err':np.inf, 'nExpo': 0,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]], 'bound': [[(None,None)]],
'labels': [['sigma0']], 'labels': [['sigma0']],
}, },
'vonmises' :{'name': 'Huber-Mises-Hencky', 'vonmises' :{'name': 'Huber-Mises-Hencky',
'func' : Hosford, 'func' : Hosford,
'nExpo': 0,'err':np.inf, 'nExpo': 0,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]], 'bound': [[(None,None)]],
'labels': [['sigma0']], 'labels': [['sigma0']],
}, },
'hershey' :{'name': 'Hershey', 'hershey' :{'name': 'Hershey',
'func': Hosford, 'func': Hosford,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]+[(1.0,8.0)]], 'bound': [[(None,None)]+[(1.0,8.0)]],
'labels': [['sigma0','a']], 'labels': [['sigma0','a']],
}, },
'hosford' :{'name': 'General Hosford', 'hosford' :{'name': 'General Hosford',
'func': Hosford, 'func': Hosford,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(0.0,2.0)]*3+[(1.0,8.0)] ], 'bound': [[(0.0,2.0)]*3+[(1.0,8.0)] ],
'labels': [['F','G','H','a']], 'labels': [['F','G','H','a']],
}, },
'hill1948' :{'name': 'Hill 1948', 'hill1948' :{'name': 'Hill 1948',
'func': Hill1948, 'func': Hill1948,
'nExpo': 0,'err':np.inf, 'nExpo': 0,'err':np.inf,
'dimen': 3, 'dimen': [2,3],
'bound': [[(None,None)]*6, [(None,None)]*4 ], 'bound': [[(None,None)]*6, [(None,None)]*4 ],
'labels': [['F','G','H','L','M','N'],['F','G','H','N']], 'labels': [['F','G','H','L','M','N'],['F','G','H','N']],
}, },
'hill1979' :{'name': 'Hill 1979', 'hill1979' :{'name': 'Hill 1979',
'func': Hill1979, 'func': Hill1979,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(-2.0,2.0)]*6+[(1.0,8.0)] ], 'bound': [[(-2.0,2.0)]*6+[(1.0,8.0)] ],
'labels': [['f','g','h','a','b','c','m']], 'labels': [['f','g','h','a','b','c','m']],
}, },
'drucker' :{'name': 'Drucker', 'drucker' :{'name': 'Drucker',
'func': Drucker, 'func': Drucker,
'nExpo': 0,'err':np.inf, 'nExpo': 0,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]+[(-3.375, 2.25)]], 'bound': [[(None,None)]+[(-3.375, 2.25)]],
'labels': [['sigma0','C_D']], 'labels': [['sigma0','C_D']],
}, },
'gdrucker' :{'name': 'General Drucker', 'gdrucker' :{'name': 'General Drucker',
'func': Drucker, 'func': Drucker,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]+[(-3.375, 2.25)]+[(1.0,8.0)] ], 'bound': [[(None,None)]+[(-3.375, 2.25)]+[(1.0,8.0)] ],
'labels': [['sigma0','C_D', 'p']], 'labels': [['sigma0','C_D', 'p']],
}, },
'barlat1989' :{'name': 'Barlat 1989', 'barlat1989' :{'name': 'Barlat 1989',
'func': Barlat1989, 'func': Barlat1989,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 2, 'dimen': [2],
'bound': [[(-3.0,3.0)]*4+[(1.0,8.0)] ], 'bound': [[(-3.0,3.0)]*4+[(1.0,8.0)] ],
'labels': [['a','c','h','f', 'm']], 'labels': [['a','c','h','f', 'm']],
}, },
'barlat1991' :{'name': 'Barlat 1991', 'barlat1991' :{'name': 'Barlat 1991',
'func': Barlat1991, 'func': Barlat1991,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [2,3],
'bound': [[(-2,2)]*6+[(1.0,8.0)], [(-2,2)]*4+[(1.0,8.0)]], 'bound': [[(-2,2)]*6+[(1.0,8.0)], [(-2,2)]*4+[(1.0,8.0)]],
'labels': [['a','b','c','f','g','h','m'],['a','b','c','f','m']], 'labels': [['a','b','c','f','g','h','m'],['a','b','c','f','m']],
}, },
'bbc2000' :{'name': 'Banabic-Balan-Comsa 2000', 'bbc2000' :{'name': 'Banabic-Balan-Comsa 2000',
'func': BBC2000, 'func': BBC2000,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 2, 'dimen': [2],
'bound': [[(None,None)]*7+[(1.0,8.0)]], #[(None,None)]*6+[(0.0,1.0)]+[(1.0,9.0)], 'bound': [[(None,None)]*7+[(1.0,8.0)]],
'labels': [['d','e','f','g','b','c','a','k']], 'labels': [['d','e','f','g','b','c','a','k']],
}, },
'bbc2003' :{'name': 'Banabic-Balan-Comsa 2003', 'bbc2003' :{'name': 'Banabic-Balan-Comsa 2003',
'func' : BBC2003, 'func' : BBC2003,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 2, 'dimen': [2],
'bound': [[(None,None)]*8+[(1.0,8.0)]], #[(None,None)]*7+[(0.0,1.0)]+[(1.0,9.0)], 'bound': [[(None,None)]*8+[(1.0,8.0)]],
'labels': [['M','N','P','Q','R','S','T','a','k']], 'labels': [['M','N','P','Q','R','S','T','a','k']],
}, },
'bbc2005' :{'name': 'Banabic-Balan-Comsa 2005', 'bbc2005' :{'name': 'Banabic-Balan-Comsa 2005',
'func' : BBC2005, 'func' : BBC2005,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 2, 'dimen': [2],
'bound': [[(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]*2+[(1.0,9.0)], 'bound': [[(None,None)]*8+[(1.0,8.0)] ],
'labels': [['L','M','N','P','Q','R','a','b','k']], 'labels': [['L','M','N','P','Q','R','a','b','k']],
}, },
'cazacu' :{'name': 'Cazacu Barlat', 'cazacu' :{'name': 'Cazacu Barlat',
'func': Cazacu_Barlat, 'func': Cazacu_Barlat,
'nExpo': 0,'err':np.inf, 'nExpo': 0,'err':np.inf,
'dimen': 3, 'dimen': [2,3],
'bound': [[(None,None)]*16+[(-2.5,2.5)]+[(None,None)]], 'bound': [[(None,None)]*16+[(-2.5,2.5)]+[(None,None)]],
'labels': [['a1','a2','a3','a4','a5','a6', 'b1','b2','b3','b4','b5','b6','b7','b8','b9','b10','b11', 'c'], 'labels': [['a1','a2','a3','a4','a5','a6', 'b1','b2','b3','b4','b5','b6','b7','b8','b9','b10','b11', 'c'],
['a1','a2','a3','a6', 'b1','b2','b3','b4','b5','b10', 'c']], ['a1','a2','a3','a6', 'b1','b2','b3','b4','b5','b10', 'c']],
@ -955,14 +998,14 @@ fitCriteria = {
'yld2000' :{'name': 'Yld2000-2D', 'yld2000' :{'name': 'Yld2000-2D',
'func': Yld2000, 'func': Yld2000,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 2, 'dimen': [2],
'bound': [[(None,None)]*8+[(1.0,8.0)]], 'bound': [[(None,None)]*8+[(1.0,8.0)]],
'labels': [['a1','a2','a7','a3','a4','a5','a6','a8','m']], 'labels': [['a1','a2','a7','a3','a4','a5','a6','a8','m']],
}, },
'yld200418p' :{'name': 'Yld2004-18p', 'yld200418p' :{'name': 'Yld2004-18p',
'func' : Yld200418p, 'func' : Yld200418p,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [3],
'bound': [[(None,None)]*18+[(1.0,8.0)], [(None,None)]*14+[(1.0,8.0)]], 'bound': [[(None,None)]*18+[(1.0,8.0)], [(None,None)]*14+[(1.0,8.0)]],
'labels': [['c12','c21','c23','c32','c31','c13','c44','c55','c66','d12','d21','d23','d32','d31','d13','d44','d55','d66','m'], 'labels': [['c12','c21','c23','c32','c31','c13','c44','c55','c66','d12','d21','d23','d32','d31','d13','d44','d55','d66','m'],
['c12','c21','c23','c32','c31','c13','c44','d12','d21','d23','d32','d31','d13','d44','m']], ['c12','c21','c23','c32','c31','c13','c44','d12','d21','d23','d32','d31','d13','d44','m']],
@ -970,11 +1013,15 @@ fitCriteria = {
'karafillis' :{'name': 'Karafillis-Boyce', 'karafillis' :{'name': 'Karafillis-Boyce',
'func' : KarafillisBoyce, 'func' : KarafillisBoyce,
'nExpo': 1,'err':np.inf, 'nExpo': 1,'err':np.inf,
'dimen': 3, 'dimen': [2,3],
'bound': [[(None,None)]*6+[(0.0,1.0)]+[(1.0,8.0)], [(None,None)]*4+[(0.0,1.0)]+[(1.0,8.0)]], 'bound': [[(None,None)]*6+[(0.0,1.0)]+[(1.0,8.0)], [(None,None)]*4+[(0.0,1.0)]+[(1.0,8.0)]],
'labels': [['c11','c12','c13','c14','c15','c16','c','m'], 'labels': [['c11','c12','c13','c14','c15','c16','c','m'],
['c11','c12','c13','c14','c15','c16','c','m']], ['c11','c12','c13','c14','c','m']],
}, },
'vegter' :{'name': 'Vegter',
'labels': 'a,b,c,d,e,f,g,h',
'dimen': [2],
},
} }
thresholdParameter = ['totalshear','equivalentStrain'] thresholdParameter = ['totalshear','equivalentStrain']
@ -1282,7 +1329,6 @@ def doSim(thread):
s.acquire() s.acquire()
global stressAll, strainAll global stressAll, strainAll
f=open(options.geometry+'_'+options.criterion+'_'+str(time.time())+'.txt','w') f=open(options.geometry+'_'+options.criterion+'_'+str(time.time())+'.txt','w')
print myFit.report_labels()
f.write(' '.join([options.fitting]+myFit.report_labels())+'\n') f.write(' '.join([options.fitting]+myFit.report_labels())+'\n')
try: try:
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])): for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
@ -1332,7 +1378,6 @@ parser.add_option('-g','--geometry', dest='geometry', type='string',
help='name of the geometry file [%default]', metavar='string') help='name of the geometry file [%default]', metavar='string')
parser.add_option('-c','--criterion', dest='criterion', choices=fitCriteria.keys(), parser.add_option('-c','--criterion', dest='criterion', choices=fitCriteria.keys(),
help='criterion for stopping simulations [%default]', metavar='string') help='criterion for stopping simulations [%default]', metavar='string')
# best/worse fitting? Stopping?
parser.add_option('-f','--fitting', dest='fitting', choices=thresholdParameter, parser.add_option('-f','--fitting', dest='fitting', choices=thresholdParameter,
help='yield criterion [%default]', metavar='string') help='yield criterion [%default]', metavar='string')
parser.add_option('-y','--yieldvalue', dest='yieldValue', type='float', nargs=3, parser.add_option('-y','--yieldvalue', dest='yieldValue', type='float', nargs=3,
@ -1346,9 +1391,7 @@ parser.add_option('-t','--threads', dest='threads', type='int',
parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2, parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2,
help='yield points: start; end; count %default', metavar='float float') help='yield points: start; end; count %default', metavar='float float')
parser.add_option('-d','--dimension', dest='dimension', type='choice', choices=['2','3'], parser.add_option('-d','--dimension', dest='dimension', type='choice', choices=['2','3'],
help='dimension of the virtual test [%default]', metavar='int') help='dimension of the virtual test [%default]', metavar='int')
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
help='Vegter criteria [%default]', metavar='float')
parser.add_option('-e', '--exponent', dest='exponent', type='float', parser.add_option('-e', '--exponent', dest='exponent', type='float',
help='exponent of non-quadratic criteria', metavar='int') help='exponent of non-quadratic criteria', metavar='int')
parser.add_option('-u', '--uniaxial', dest='eqStress', type='float', parser.add_option('-u', '--uniaxial', dest='eqStress', type='float',
@ -1364,7 +1407,6 @@ parser.set_defaults(fitting = 'totalshear')
parser.set_defaults(geometry = '20grains16x16x16') parser.set_defaults(geometry = '20grains16x16x16')
parser.set_defaults(bounds = None) parser.set_defaults(bounds = None)
parser.set_defaults(dimension = '3') parser.set_defaults(dimension = '3')
parser.set_defaults(vegter = 'False')
parser.set_defaults(exponent = -1.0) parser.set_defaults(exponent = -1.0)
options = parser.parse_args()[0] options = parser.parse_args()[0]
@ -1389,35 +1431,19 @@ if not os.path.isfile('numerics.config'):
if not os.path.isfile('material.config'): if not os.path.isfile('material.config'):
damask.util.croak('material.config file not found') damask.util.croak('material.config file not found')
options.dimension = int(options.dimension)
if options.vegter is True:
options.dimension = 2
else:
options.dimension = int(options.dimension)
if options.criterion == 'hill1948': stressUnit = 1.0e9 if options.criterion == 'hill1948': stressUnit = 1.0e9
else : stressUnit = 1.0e6 else : stressUnit = 1.0e6
fit_allResults = {}
if options.criterion == 'all': if options.dimension not in fitCriteria[options.criterion]['dimen']:
noExpoList = ['tresca', 'vonmises', 'hill1948', 'drucker'] parser.error('invalid dimension for selected criterion')
for criter in noExpoList:
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter) if options.criterion not in ['vonmises','tresca','drucker','hill1984'] and options.eqStress == None:
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual} parser.error('please specifie an equivalent stress (e.g. fitting to von Mises)')
for criter in [x for x in fitCriteria.keys() if x not in noExpoList+['vegter','all'] ]:
if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
eqStress = fit_allResults['vonmises']['results'][-1] run = runFit(options.exponent, options.eqStress, options.dimension, options.criterion)
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
else:
criter = options.criterion
if fitCriteria[criter]['nExpo'] == 0:
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
else:
if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], 'vonmises')
eqStress = fitResults[-1]
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
damask.util.croak('Finished fitting to yield criteria') damask.util.croak('Finished fitting to yield criteria')