Merge branch 'development' into python-improvements

This commit is contained in:
Philip Eisenlohr 2021-01-07 10:58:33 -05:00
commit bde66d85fc
43 changed files with 1592 additions and 2436 deletions

View File

@ -4,7 +4,7 @@ include (FindPkgConfig REQUIRED)
# Dummy project to determine compiler names and version # Dummy project to determine compiler names and version
project (Prerequisites LANGUAGES) project (Prerequisites LANGUAGES)
set(ENV{PKG_CONFIG_PATH} "$ENV{PETSC_DIR}/$ENV{PETSC_ARCH}/lib/pkgconfig") set(ENV{PKG_CONFIG_PATH} "$ENV{PETSC_DIR}/$ENV{PETSC_ARCH}/lib/pkgconfig")
pkg_search_module (PETSC REQUIRED PETSc>3.12.0) pkg_check_modules (PETSC REQUIRED PETSc>=3.12.0 PETSc<3.15.0)
pkg_get_variable (CMAKE_Fortran_COMPILER PETSc fcompiler) pkg_get_variable (CMAKE_Fortran_COMPILER PETSc fcompiler)
pkg_get_variable (CMAKE_C_COMPILER PETSc ccompiler) pkg_get_variable (CMAKE_C_COMPILER PETSc ccompiler)

View File

@ -1 +1 @@
v3.0.0-alpha2-97-g10bbeb561 v3.0.0-alpha2-173-g584c7cc3a

View File

@ -5,8 +5,8 @@ homogenization:
phase: phase:
Aluminum: Aluminum:
lattice: cF
mechanics: mechanics:
lattice: cF
output: [F, P, F_e, F_p, L_p] output: [F, P, F_e, F_p, L_p]
elasticity: {C_11: 106.75e9, C_12: 60.41e9, C_44: 28.34e9, type: hooke} elasticity: {C_11: 106.75e9, C_12: 60.41e9, C_44: 28.34e9, type: hooke}
plasticity: plasticity:

View File

@ -367,7 +367,7 @@ class Rotation:
"""Intermediate representation supporting quaternion averaging.""" """Intermediate representation supporting quaternion averaging."""
return np.einsum('...i,...j',quat,quat) return np.einsum('...i,...j',quat,quat)
if not weights: if weights is None:
weights = np.ones(self.shape,dtype=float) weights = np.ones(self.shape,dtype=float)
eig, vec = np.linalg.eig(np.sum(_M(self.quaternion) * weights[...,np.newaxis,np.newaxis],axis=-3) \ eig, vec = np.linalg.eig(np.sum(_M(self.quaternion) * weights[...,np.newaxis,np.newaxis],axis=-3) \

View File

@ -825,6 +825,14 @@ class TestRotation:
print(f'append 3x {shape} --> {s.shape}') print(f'append 3x {shape} --> {s.shape}')
assert np.logical_and(s[0,...] == r[0,...], s[-1,...] == p[-1,...]).all() assert np.logical_and(s[0,...] == r[0,...], s[-1,...] == p[-1,...]).all()
@pytest.mark.parametrize('shape',[None,1,(1,),(4,2),(3,3,2)])
def test_append_list(self,shape):
r = Rotation.from_random(shape=shape)
p = Rotation.from_random(shape=shape)
s = r.append([r,p])
print(f'append 3x {shape} --> {s.shape}')
assert s[0,...] == r[0,...] and s[-1,...] == p[-1,...]
@pytest.mark.parametrize('quat,standardized',[ @pytest.mark.parametrize('quat,standardized',[
([-1,0,0,0],[1,0,0,0]), ([-1,0,0,0],[1,0,0,0]),
([-0.5,-0.5,-0.5,-0.5],[0.5,0.5,0.5,0.5]), ([-0.5,-0.5,-0.5,-0.5],[0.5,0.5,0.5,0.5]),

View File

@ -5,7 +5,6 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module CPFEM module CPFEM
use prec use prec
use FEsolving
use math use math
use rotations use rotations
use YAML_types use YAML_types
@ -197,11 +196,9 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
CPFEM_dcsde(1:6,1:6,ip,elCP) = ODD_JACOBIAN * math_eye(6) CPFEM_dcsde(1:6,1:6,ip,elCP) = ODD_JACOBIAN * math_eye(6)
else validCalculation else validCalculation
FEsolving_execElem = elCP
FEsolving_execIP = ip
if (debugCPFEM%extensive) & if (debugCPFEM%extensive) &
print'(a,i8,1x,i2)', '<< CPFEM >> calculation for elFE ip ',elFE,ip print'(a,i8,1x,i2)', '<< CPFEM >> calculation for elFE ip ',elFE,ip
call materialpoint_stressAndItsTangent(dt) call materialpoint_stressAndItsTangent(dt,[ip,ip],[elCP,elCP])
terminalIllness: if (terminallyIll) then terminalIllness: if (terminallyIll) then
@ -260,7 +257,7 @@ end subroutine CPFEM_general
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine CPFEM_forward subroutine CPFEM_forward
call crystallite_forward call homogenization_forward
call constitutive_forward call constitutive_forward
end subroutine CPFEM_forward end subroutine CPFEM_forward
@ -277,7 +274,6 @@ subroutine CPFEM_results(inc,time)
call results_openJobFile call results_openJobFile
call results_addIncrement(inc,time) call results_addIncrement(inc,time)
call constitutive_results call constitutive_results
call crystallite_results
call homogenization_results call homogenization_results
call discretization_results call discretization_results
call results_finalizeIncrement call results_finalizeIncrement

View File

@ -6,7 +6,6 @@
module CPFEM2 module CPFEM2
use prec use prec
use config use config
use FEsolving
use math use math
use rotations use rotations
use YAML_types use YAML_types
@ -97,7 +96,7 @@ end subroutine CPFEM_restartWrite
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine CPFEM_forward subroutine CPFEM_forward
call crystallite_forward call homogenization_forward
call constitutive_forward call constitutive_forward
end subroutine CPFEM_forward end subroutine CPFEM_forward
@ -114,7 +113,6 @@ subroutine CPFEM_results(inc,time)
call results_openJobFile call results_openJobFile
call results_addIncrement(inc,time) call results_addIncrement(inc,time)
call constitutive_results call constitutive_results
call crystallite_results
call homogenization_results call homogenization_results
call discretization_results call discretization_results
call results_finalizeIncrement call results_finalizeIncrement

View File

@ -54,12 +54,6 @@ subroutine DAMASK_interface_init
=================================================================================================== ===================================================================================================
-- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION -- -- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION --
=================================================================================================== ===================================================================================================
============ THIS VERSION OF DAMASK REQUIRES A DIFFERENT PETSc VERSION ========================
=============== THIS VERSION OF DAMASK REQUIRES A DIFFERENT PETSc VERSION =====================
================== THIS VERSION OF DAMASK REQUIRES A DIFFERENT PETSc VERSION ==================
===================================================================================================
-- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION --- WRONG PETSc VERSION --
===================================================================================================
#endif #endif
character(len=pPathLen*3+pStringLen) :: & character(len=pPathLen*3+pStringLen) :: &

View File

@ -176,7 +176,6 @@ subroutine hypela2(d,g,e,de,s,t,dt,ngens,m,nn,kcus,matus,ndi,nshear,disp, &
use DAMASK_interface use DAMASK_interface
use config use config
use YAML_types use YAML_types
use FEsolving
use discretization_marc use discretization_marc
use homogenization use homogenization
use CPFEM use CPFEM

View File

@ -1,15 +0,0 @@
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief global variables for flow control
!--------------------------------------------------------------------------------------------------
module FEsolving
implicit none
public
integer, dimension(2) :: &
FEsolving_execElem, & !< for ping-pong scheme always whole range, otherwise one specific element
FEsolving_execIP !< for ping-pong scheme always range to max IP, otherwise one specific IP
end module FEsolving

View File

@ -11,9 +11,7 @@
#include "config.f90" #include "config.f90"
#include "LAPACK_interface.f90" #include "LAPACK_interface.f90"
#include "math.f90" #include "math.f90"
#include "quaternions.f90"
#include "rotations.f90" #include "rotations.f90"
#include "FEsolving.f90"
#include "element.f90" #include "element.f90"
#include "HDF5_utilities.f90" #include "HDF5_utilities.f90"
#include "results.f90" #include "results.f90"

File diff suppressed because it is too large Load Diff

View File

@ -217,32 +217,35 @@ end subroutine constitutive_damage_getRateAndItsTangents
!---------------------------------------------------------------------------------------------- !----------------------------------------------------------------------------------------------
!< @brief writes damage sources results to HDF5 output file !< @brief writes damage sources results to HDF5 output file
!---------------------------------------------------------------------------------------------- !----------------------------------------------------------------------------------------------
module subroutine damage_results module subroutine damage_results(group,ph)
integer :: p,i character(len=*), intent(in) :: group
character(len=pStringLen) :: group integer, intent(in) :: ph
do p = 1, size(material_name_phase) integer :: so
sourceLoop: do i = 1, phase_Nsources(p) sourceLoop: do so = 1, phase_Nsources(ph)
group = trim('current/phase')//'/'//trim(material_name_phase(p))
group = trim(group)//'/sources'
call results_closeGroup(results_addGroup(group))
sourceType: select case (phase_source(i,p)) if (phase_source(so,ph) /= SOURCE_UNDEFINED_ID) &
call results_closeGroup(results_addGroup(group//'sources/')) ! should be 'damage'
case (SOURCE_damage_anisoBrittle_ID) sourceType sourceType: select case (phase_source(so,ph))
call source_damage_anisoBrittle_results(p,group)
case (SOURCE_damage_anisoDuctile_ID) sourceType
call source_damage_anisoDuctile_results(p,group)
case (SOURCE_damage_isoBrittle_ID) sourceType
call source_damage_isoBrittle_results(p,group)
case (SOURCE_damage_isoDuctile_ID) sourceType
call source_damage_isoDuctile_results(p,group)
end select sourceType
enddo SourceLoop case (SOURCE_damage_anisoBrittle_ID) sourceType
enddo call source_damage_anisoBrittle_results(ph,group//'sources/')
case (SOURCE_damage_anisoDuctile_ID) sourceType
call source_damage_anisoDuctile_results(ph,group//'sources/')
case (SOURCE_damage_isoBrittle_ID) sourceType
call source_damage_isoBrittle_results(ph,group//'sources/')
case (SOURCE_damage_isoDuctile_ID) sourceType
call source_damage_isoDuctile_results(ph,group//'sources/')
end select sourceType
enddo SourceLoop
end subroutine damage_results end subroutine damage_results

File diff suppressed because it is too large Load Diff

View File

@ -485,12 +485,12 @@ end function plastic_dislotwin_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Return the homogenized elasticity matrix. !> @brief Return the homogenized elasticity matrix.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC) module function plastic_dislotwin_homogenizedC(co,ip,el) result(homogenizedC)
real(pReal), dimension(6,6) :: & real(pReal), dimension(6,6) :: &
homogenizedC homogenizedC
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
@ -498,9 +498,9 @@ module function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC)
of of
real(pReal) :: f_unrotated real(pReal) :: f_unrotated
of = material_phasememberAt(ipc,ip,el) of = material_phasememberAt(co,ip,el)
associate(prm => param(phase_plasticityInstance(material_phaseAt(ipc,el))),& associate(prm => param(phase_plasticityInstance(material_phaseAt(co,el))),&
stt => state(phase_plasticityInstance(material_phaseAT(ipc,el)))) stt => state(phase_plasticityInstance(material_phaseAT(co,el))))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%f_tw(1:prm%sum_N_tw,of)) & - sum(stt%f_tw(1:prm%sum_N_tw,of)) &

View File

@ -552,11 +552,10 @@ end function plastic_nonlocal_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure !> @brief calculates quantities characterizing the microstructure
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dependentState(F, Fp, instance, of, ip, el) module subroutine plastic_nonlocal_dependentState(F, instance, of, ip, el)
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
F, & F
Fp
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of, & of, &
@ -564,6 +563,8 @@ module subroutine plastic_nonlocal_dependentState(F, Fp, instance, of, ip, el)
el el
integer :: & integer :: &
ph, &
me, &
no, & !< neighbor offset no, & !< neighbor offset
neighbor_el, & ! element number of neighboring material point neighbor_el, & ! element number of neighboring material point
neighbor_ip, & ! integration point of neighboring material point neighbor_ip, & ! integration point of neighboring material point
@ -643,8 +644,10 @@ module subroutine plastic_nonlocal_dependentState(F, Fp, instance, of, ip, el)
rho0 = getRho0(instance,of,ip,el) rho0 = getRho0(instance,of,ip,el)
if (.not. phase_localPlasticity(material_phaseAt(1,el)) .and. prm%shortRangeStressCorrection) then if (.not. phase_localPlasticity(material_phaseAt(1,el)) .and. prm%shortRangeStressCorrection) then
invFp = math_inv33(Fp) ph = material_phaseAt(1,el)
invFe = matmul(Fp,math_inv33(F)) me = material_phaseMemberAt(1,ip,el)
invFp = math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,me))
invFe = matmul(constitutive_mech_Fp(ph)%data(1:3,1:3,me),math_inv33(F))
rho_edg_delta = rho0(:,mob_edg_pos) - rho0(:,mob_edg_neg) rho_edg_delta = rho0(:,mob_edg_pos) - rho0(:,mob_edg_neg)
rho_scr_delta = rho0(:,mob_scr_pos) - rho0(:,mob_scr_neg) rho_scr_delta = rho0(:,mob_scr_pos) - rho0(:,mob_scr_neg)
@ -973,14 +976,13 @@ end subroutine plastic_nonlocal_deltaState
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure !> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, & module subroutine plastic_nonlocal_dotState(Mp, F, Temperature,timestep, &
instance,of,ip,el) instance,of,ip,el)
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< MandelStress Mp !< MandelStress
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: & real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F, & !< elastic deformation gradient F !< Deformation gradient
Fp !< plastic deformation gradient
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
Temperature, & !< temperature Temperature, & !< temperature
timestep !< substepped crystallite time increment timestep !< substepped crystallite time increment
@ -1147,7 +1149,7 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) & - rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have - rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
rhoDot = rhoDotFlux(F,Fp,timestep, instance,of,ip,el) & rhoDot = rhoDotFlux(F,timestep, instance,of,ip,el) &
+ rhoDotMultiplication & + rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide & + rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation & + rhoDotAthermalAnnihilation &
@ -1176,11 +1178,10 @@ end subroutine plastic_nonlocal_dotState
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure !> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
function rhoDotFlux(F,Fp,timestep, instance,of,ip,el) function rhoDotFlux(F,timestep, instance,of,ip,el)
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: & real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F, & !< elastic deformation gradient F !< Deformation gradient
Fp !< plastic deformation gradient
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
timestep !< substepped crystallite time increment timestep !< substepped crystallite time increment
integer, intent(in) :: & integer, intent(in) :: &
@ -1293,7 +1294,7 @@ function rhoDotFlux(F,Fp,timestep, instance,of,ip,el)
m(1:3,:,4) = prm%slip_transverse m(1:3,:,4) = prm%slip_transverse
my_F = F(1:3,1:3,1,ip,el) my_F = F(1:3,1:3,1,ip,el)
my_Fe = matmul(my_F, math_inv33(Fp(1:3,1:3,1,ip,el))) my_Fe = matmul(my_F, math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,of)))
neighbors: do n = 1,nIPneighbors neighbors: do n = 1,nIPneighbors
@ -1311,7 +1312,7 @@ function rhoDotFlux(F,Fp,timestep, instance,of,ip,el)
if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient
neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el)) neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el))
neighbor_F = F(1:3,1:3,1,neighbor_ip,neighbor_el) neighbor_F = F(1:3,1:3,1,neighbor_ip,neighbor_el)
neighbor_Fe = matmul(neighbor_F, math_inv33(Fp(1:3,1:3,1,neighbor_ip,neighbor_el))) neighbor_Fe = matmul(neighbor_F, math_inv33(constitutive_mech_Fp(np)%data(1:3,1:3,no)))
Favg = 0.5_pReal * (my_F + neighbor_F) Favg = 0.5_pReal * (my_F + neighbor_F)
else ! if no neighbor, take my value as average else ! if no neighbor, take my value as average
Favg = my_F Favg = my_F

View File

@ -148,12 +148,12 @@ real(pReal) function damage_nonlocal_getMobility(ip,el)
ip, & !< integration point number ip, & !< integration point number
el !< element number el !< element number
integer :: & integer :: &
ipc co
damage_nonlocal_getMobility = 0.0_pReal damage_nonlocal_getMobility = 0.0_pReal
do ipc = 1, homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_M(material_phaseAt(ipc,el)) damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_M(material_phaseAt(co,el))
enddo enddo
damage_nonlocal_getMobility = damage_nonlocal_getMobility/& damage_nonlocal_getMobility = damage_nonlocal_getMobility/&

View File

@ -19,7 +19,6 @@ module discretization_grid
use results use results
use discretization use discretization
use geometry_plastic_nonlocal use geometry_plastic_nonlocal
use FEsolving
implicit none implicit none
private private
@ -117,9 +116,6 @@ subroutine discretization_grid_init(restart)
(grid(1)+1) * (grid(2)+1) * grid3,& ! ...unless not last process (grid(1)+1) * (grid(2)+1) * grid3,& ! ...unless not last process
worldrank+1==worldsize)) worldrank+1==worldsize))
FEsolving_execElem = [1,product(myGrid)] ! parallel loop bounds set to comprise all elements
FEsolving_execIP = [1,1] ! parallel loop bounds set to comprise the only IP
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! store geometry information for post processing ! store geometry information for post processing
if(.not. restart) then if(.not. restart) then

View File

@ -18,7 +18,6 @@ module grid_mech_FEM
use math use math
use rotations use rotations
use spectral_utilities use spectral_utilities
use FEsolving
use config use config
use homogenization use homogenization
use discretization use discretization

View File

@ -18,7 +18,6 @@ module grid_mech_spectral_basic
use math use math
use rotations use rotations
use spectral_utilities use spectral_utilities
use FEsolving
use config use config
use homogenization use homogenization
use discretization_grid use discretization_grid

View File

@ -18,7 +18,6 @@ module grid_mech_spectral_polarisation
use math use math
use rotations use rotations
use spectral_utilities use spectral_utilities
use FEsolving
use config use config
use homogenization use homogenization
use discretization_grid use discretization_grid

View File

@ -810,9 +810,9 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
print'(/,a)', ' ... evaluating constitutive response ......................................' print'(/,a)', ' ... evaluating constitutive response ......................................'
flush(IO_STDOUT) flush(IO_STDOUT)
homogenization_F = reshape(F,[3,3,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field homogenization_F = reshape(F,[3,3,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
call materialpoint_stressAndItsTangent(timeinc) ! calculate P field call materialpoint_stressAndItsTangent(timeinc,[1,1],[1,product(grid(1:2))*grid3]) ! calculate P field
P = reshape(homogenization_P, [3,3,grid(1),grid(2),grid3]) P = reshape(homogenization_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P

View File

@ -11,7 +11,6 @@ module homogenization
use math use math
use material use material
use constitutive use constitutive
use FEsolving
use discretization use discretization
use thermal_isothermal use thermal_isothermal
use thermal_conduction use thermal_conduction
@ -48,20 +47,6 @@ module homogenization
type(tNumerics) :: num type(tNumerics) :: num
type :: tDebugOptions
logical :: &
basic, &
extensive, &
selective
integer :: &
element, &
ip, &
grain
end type tDebugOptions
type(tDebugOptions) :: debugHomog
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
interface interface
@ -85,33 +70,27 @@ module homogenization
end subroutine mech_homogenize end subroutine mech_homogenize
module subroutine mech_results(group_base,h) module subroutine mech_results(group_base,h)
character(len=*), intent(in) :: group_base character(len=*), intent(in) :: group_base
integer, intent(in) :: h integer, intent(in) :: h
end subroutine mech_results end subroutine mech_results
! -------- ToDo --------------------------------------------------------- module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy)
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el) real(pReal), intent(in) :: &
logical, dimension(2) :: mech_RGC_updateState subdt !< current time step
real(pReal), dimension(:,:,:), intent(in) :: & real(pReal), intent(in), dimension(3,3) :: &
P,& !< partitioned stresses subF
F,& !< partitioned deformation gradients integer, intent(in) :: &
F0 !< partitioned initial deformation gradients ip, & !< integration point
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses el !< element number
real(pReal), dimension(3,3), intent(in) :: avgF !< average F logical, dimension(2) :: doneAndHappy
real(pReal), intent(in) :: dt !< time increment end function mech_updateState
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
end function mech_RGC_updateState
end interface end interface
! -----------------------------------------------------------------------
public :: & public :: &
homogenization_init, & homogenization_init, &
materialpoint_stressAndItsTangent, & materialpoint_stressAndItsTangent, &
homogenization_forward, &
homogenization_results homogenization_results
contains contains
@ -124,24 +103,10 @@ subroutine homogenization_init
class (tNode) , pointer :: & class (tNode) , pointer :: &
num_homog, & num_homog, &
num_homogGeneric, & num_homogGeneric
debug_homogenization
print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT) print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT)
debug_homogenization => config_debug%get('homogenization', defaultVal=emptyList)
debugHomog%basic = debug_homogenization%contains('basic')
debugHomog%extensive = debug_homogenization%contains('extensive')
debugHomog%selective = debug_homogenization%contains('selective')
debugHomog%element = config_debug%get_asInt('element',defaultVal = 1)
debugHomog%ip = config_debug%get_asInt('integrationpoint',defaultVal = 1)
debugHomog%grain = config_debug%get_asInt('grain',defaultVal = 1)
if (debugHomog%grain < 1 &
.or. debugHomog%grain > homogenization_Nconstituents(material_homogenizationAt(debugHomog%element))) &
call IO_error(602,ext_msg='constituent', el=debugHomog%element, g=debugHomog%grain)
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict) num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict) num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
@ -171,178 +136,130 @@ end subroutine homogenization_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points !> @brief parallelized calculation of stress and corresponding tangent at material points
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(dt) subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem)
real(pReal), intent(in) :: dt !< time increment real(pReal), intent(in) :: dt !< time increment
integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP
integer :: & integer :: &
NiterationHomog, &
NiterationMPstate, & NiterationMPstate, &
i, & !< integration point number ip, & !< integration point number
e, & !< element number el, & !< element number
myNgrains myNgrains, co, ce, ho, me
real(pReal), dimension(discretization_nIPs,discretization_Nelems) :: & real(pReal) :: &
subFrac, & subFrac, &
subStep subStep
logical, dimension(discretization_nIPs,discretization_Nelems) :: & logical :: &
requested, &
converged converged
logical, dimension(2,discretization_nIPs,discretization_Nelems) :: & logical, dimension(2) :: &
doneAndHappy doneAndHappy
integer :: m
!$OMP PARALLEL DO PRIVATE(ce,me,ho,myNgrains,NiterationMPstate,subFrac,converged,subStep,doneAndHappy)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
myNgrains = homogenization_Nconstituents(ho)
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
me = material_homogenizationMemberAt(ip,el)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! initialize restoration points ! initialize restoration points
do e = FEsolving_execElem(1),FEsolving_execElem(2) call constitutive_initializeRestorationPoints(ip,el)
do i = FEsolving_execIP(1),FEsolving_execIP(2);
call crystallite_initializeRestorationPoints(i,e) subFrac = 0.0_pReal
converged = .false. ! pretend failed step ...
subStep = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation
subFrac(i,e) = 0.0_pReal if (homogState(ho)%sizeState > 0) &
converged(i,e) = .false. ! pretend failed step ... homogState(ho)%subState0(:,me) = homogState(ho)%State0(:,me)
subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation if (damageState(ho)%sizeState > 0) &
requested(i,e) = .true. ! everybody requires calculation damageState(ho)%subState0(:,me) = damageState(ho)%State0(:,me)
if (homogState(material_homogenizationAt(e))%sizeState > 0) & cutBackLooping: do while (.not. terminallyIll .and. subStep > num%subStepMinHomog)
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (damageState(material_homogenizationAt(e))%sizeState > 0) & if (converged) then
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & subFrac = subFrac + subStep
damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) subStep = min(1.0_pReal-subFrac,num%stepIncreaseHomog*subStep) ! introduce flexibility for step increase/acceleration
enddo
enddo
NiterationHomog = 0 steppingNeeded: if (subStep > num%subStepMinHomog) then
cutBackLooping: do while (.not. terminallyIll .and. &
any(subStep(FEsolving_execIP(1):FEsolving_execIP(2),&
FEsolving_execElem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(m)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (converged(i,e)) then
subFrac(i,e) = subFrac(i,e) + subStep(i,e)
subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then
! wind forward grain starting point ! wind forward grain starting point
call crystallite_windForward(i,e) call constitutive_windForward(ip,el)
if(homogState(material_homogenizationAt(e))%sizeState > 0) & if(homogState(ho)%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(ho)%subState0(:,me) = homogState(ho)%State(:,me)
homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) if(damageState(ho)%sizeState > 0) &
if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(ho)%subState0(:,me) = damageState(ho)%State(:,me)
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
endif steppingNeeded endif steppingNeeded
elseif ( (myNgrains == 1 .and. subStep <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
else num%subStepSizeHomog * subStep <= num%subStepMinHomog ) then ! would require too small subStep
if ( (myNgrains == 1 .and. subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
num%subStepSizeHomog * subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense ! cutback makes no sense
if (.not. terminallyIll) then ! so first signals terminally ill... if (.not. terminallyIll) & ! so first signals terminally ill...
print*, ' Integration point ', i,' at element ', e, ' terminally ill' print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
endif terminallyIll = .true. ! ...and kills all others
terminallyIll = .true. ! ...and kills all others else ! cutback makes sense
else ! cutback makes sense subStep = num%subStepSizeHomog * subStep ! crystallite had severe trouble, so do a significant cutback
subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
call crystallite_restore(i,e,subStep(i,e) < 1.0_pReal) call constitutive_restore(ip,el,subStep < 1.0_pReal)
call constitutive_restore(i,e)
if(homogState(material_homogenizationAt(e))%sizeState > 0) & if(homogState(ho)%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & homogState(ho)%State(:,me) = homogState(ho)%subState0(:,me)
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) if(damageState(ho)%sizeState > 0) &
if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(ho)%State(:,me) = damageState(ho)%subState0(:,me)
damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
endif
endif endif
if (subStep(i,e) > num%subStepMinHomog) then if (subStep > num%subStepMinHomog) doneAndHappy = [.false.,.true.]
requested(i,e) = .true.
doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0 NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll &
convergenceLooping: do while (.not. terminallyIll .and. & .and. .not. doneAndHappy(1) &
any( requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. NiterationMPstate < num%nMPstate)
.and. .not. doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & NiterationMPstate = NiterationMPstate + 1
) .and. &
NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! deformation partitioning ! deformation partitioning
!$OMP PARALLEL DO PRIVATE(myNgrains,m)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done
m = (e-1)*discretization_nIPs + i
call mech_partition(homogenization_F0(1:3,1:3,m) &
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m))&
*(subStep(i,e)+subFrac(i,e)), &
i,e)
crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!-------------------------------------------------------------------------------------------------- if (.not. doneAndHappy(1)) then
! crystallite integration ce = (el-1)*discretization_nIPs + ip
converged = crystallite_stress() !ToDo: MD not sure if that is the best logic call mech_partition(homogenization_F0(1:3,1:3,ce) &
+ (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce))&
*(subStep+subFrac), &
ip,el)
converged = .true.
do co = 1, myNgrains
converged = converged .and. crystallite_stress(dt*subStep,co,ip,el)
enddo
!-------------------------------------------------------------------------------------------------- if (.not. converged) then
! state update doneAndHappy = [.true.,.false.]
!$OMP PARALLEL DO PRIVATE(m)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then
if (.not. converged(i,e)) then
doneAndHappy(1:2,i,e) = [.true.,.false.]
else else
m = (e-1)*discretization_nIPs + i ce = (el-1)*discretization_nIPs + ip
doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e), & doneAndHappy = mech_updateState(dt*subStep, &
homogenization_F0(1:3,1:3,m) & homogenization_F0(1:3,1:3,ce) &
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m)) & + (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce)) &
*(subStep(i,e)+subFrac(i,e)), & *(subStep+subFrac), &
i,e) ip,el)
converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy converged = all(doneAndHappy)
endif endif
endif endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping enddo convergenceLooping
enddo cutBackLooping
NiterationHomog = NiterationHomog + 1 enddo
enddo
enddo cutBackLooping !$OMP END PARALLEL DO
if (.not. terminallyIll ) then if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO PRIVATE(ho,myNgrains)
!$OMP PARALLEL DO elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) ho = material_homogenizationAt(el)
IpLooping4: do i = FEsolving_execIP(1),FEsolving_execIP(2) myNgrains = homogenization_Nconstituents(ho)
call mech_homogenize(i,e) IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
enddo IpLooping4 do co = 1, myNgrains
enddo elementLooping4 call crystallite_orientations(co,ip,el)
enddo
call mech_homogenize(ip,el)
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
else else
print'(/,a,/)', ' << HOMOG >> Material Point terminally ill' print'(/,a,/)', ' << HOMOG >> Material Point terminally ill'
@ -351,77 +268,56 @@ subroutine materialpoint_stressAndItsTangent(dt)
end subroutine materialpoint_stressAndItsTangent end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function updateState(subdt,subF,ip,el)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer :: c
logical, dimension(2) :: updateState
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
updateState = .true.
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do c=1,homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
enddo
updateState = &
updateState .and. &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_partitionedF(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_partitionedF0(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el),&
subF,&
subdt, &
dPdFs, &
ip, &
el)
end select chosenHomogenization
end function updateState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file !> @brief writes homogenization results to HDF5 output file
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine homogenization_results subroutine homogenization_results
use material, only: &
material_homogenization_type => homogenization_type
integer :: p integer :: ho
character(len=:), allocatable :: group_base,group character(len=:), allocatable :: group_base,group
do p=1,size(material_name_homogenization) call results_closeGroup(results_addGroup('current/homogenization/'))
group_base = 'current/homogenization/'//trim(material_name_homogenization(p))
do ho=1,size(material_name_homogenization)
group_base = 'current/homogenization/'//trim(material_name_homogenization(ho))
call results_closeGroup(results_addGroup(group_base)) call results_closeGroup(results_addGroup(group_base))
call mech_results(group_base,p) call mech_results(group_base,ho)
group = trim(group_base)//'/damage' group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group)) call results_closeGroup(results_addGroup(group))
select case(damage_type(p)) select case(damage_type(ho))
case(DAMAGE_NONLOCAL_ID) case(DAMAGE_NONLOCAL_ID)
call damage_nonlocal_results(p,group) call damage_nonlocal_results(ho,group)
end select end select
group = trim(group_base)//'/thermal' group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group)) call results_closeGroup(results_addGroup(group))
select case(thermal_type(p)) select case(thermal_type(ho))
case(THERMAL_CONDUCTION_ID) case(THERMAL_CONDUCTION_ID)
call thermal_conduction_results(p,group) call thermal_conduction_results(ho,group)
end select end select
enddo enddo
end subroutine homogenization_results end subroutine homogenization_results
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine homogenization_forward
integer :: ho
do ho = 1, size(material_name_homogenization)
homogState (ho)%state0 = homogState (ho)%state
damageState(ho)%state0 = damageState(ho)%state
enddo
end subroutine homogenization_forward
end module homogenization end module homogenization

View File

@ -4,6 +4,7 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
submodule(homogenization) homogenization_mech submodule(homogenization) homogenization_mech
interface interface
module subroutine mech_none_init module subroutine mech_none_init
@ -51,6 +52,21 @@ submodule(homogenization) homogenization_mech
end subroutine mech_RGC_averageStressAndItsTangent end subroutine mech_RGC_averageStressAndItsTangent
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
F,& !< partitioned deformation gradients
F0 !< partitioned initial deformation gradients
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
end function mech_RGC_updateState
module subroutine mech_RGC_results(instance,group) module subroutine mech_RGC_results(instance,group)
integer, intent(in) :: instance !< homogenization instance integer, intent(in) :: instance !< homogenization instance
character(len=*), intent(in) :: group !< group name in HDF5 file character(len=*), intent(in) :: group !< group name in HDF5 file
@ -100,16 +116,16 @@ module subroutine mech_partition(subF,ip,el)
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partitionedF(1:3,1:3,1,ip,el) = subF crystallite_F(1:3,1:3,1,ip,el) = subF
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_partitionDeformation(& call mech_isostrain_partitionDeformation(&
crystallite_partitionedF(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & crystallite_F(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
subF) subF)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_partitionDeformation(& call mech_RGC_partitionDeformation(&
crystallite_partitionedF(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & crystallite_F(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
subF,& subF,&
ip, & ip, &
el) el)
@ -127,35 +143,35 @@ module subroutine mech_homogenize(ip,el)
integer, intent(in) :: & integer, intent(in) :: &
ip, & !< integration point ip, & !< integration point
el !< element number el !< element number
integer :: c,m integer :: co,ce
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el))) real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
m = (el-1)* discretization_nIPs + ip ce = (el-1)* discretization_nIPs + ip
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization case (HOMOGENIZATION_NONE_ID) chosenHomogenization
homogenization_P(1:3,1:3,m) = crystallite_P(1:3,1:3,1,ip,el) homogenization_P(1:3,1:3,ce) = crystallite_P(1:3,1:3,1,ip,el)
homogenization_dPdF(1:3,1:3,1:3,1:3,m) = crystallite_stressTangent(1,ip,el) homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = crystallite_stressTangent(1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
do c = 1, homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el) dPdFs(:,:,:,:,co) = crystallite_stressTangent(co,ip,el)
enddo enddo
call mech_isostrain_averageStressAndItsTangent(& call mech_isostrain_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,m), & homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,m),& homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
dPdFs, & dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el))) homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do c = 1, homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el) dPdFs(:,:,:,:,co) = crystallite_stressTangent(co,ip,el)
enddo enddo
call mech_RGC_averageStressAndItsTangent(& call mech_RGC_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,m), & homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,m),& homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
dPdFs, & dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el))) homogenization_typeInstance(material_homogenizationAt(el)))
@ -165,6 +181,45 @@ module subroutine mech_homogenize(ip,el)
end subroutine mech_homogenize end subroutine mech_homogenize
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: doneAndHappy
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = crystallite_stressTangent(co,ip,el)
enddo
doneAndHappy = &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_F(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_partitionedF0(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el),&
subF,&
subdt, &
dPdFs, &
ip, &
el)
else
doneAndHappy = .true.
endif
end function mech_updateState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Write results to file. !> @brief Write results to file.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------

View File

@ -8,6 +8,7 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
submodule(homogenization:homogenization_mech) homogenization_mech_RGC submodule(homogenization:homogenization_mech) homogenization_mech_RGC
use rotations use rotations
use lattice
type :: tParameters type :: tParameters
integer, dimension(:), allocatable :: & integer, dimension(:), allocatable :: &
@ -18,8 +19,6 @@ submodule(homogenization:homogenization_mech) homogenization_mech_RGC
real(pReal), dimension(:), allocatable :: & real(pReal), dimension(:), allocatable :: &
D_alpha, & D_alpha, &
a_g a_g
integer :: &
of_debug = 0
character(len=pStringLen), allocatable, dimension(:) :: & character(len=pStringLen), allocatable, dimension(:) :: &
output output
end type tParameters end type tParameters
@ -151,12 +150,6 @@ module subroutine mech_RGC_init(num_homogMech)
st0 => state0(homogenization_typeInstance(h)), & st0 => state0(homogenization_typeInstance(h)), &
dst => dependentState(homogenization_typeInstance(h))) dst => dependentState(homogenization_typeInstance(h)))
#ifdef DEBUG
if (h==material_homogenizationAt(debugHomog%element)) then
prm%of_debug = material_homogenizationMemberAt(debugHomog%ip,debugHomog%element)
endif
#endif
#if defined (__GFORTRAN__) #if defined (__GFORTRAN__)
prm%output = output_asStrings(homogMech) prm%output = output_asStrings(homogMech)
#else #else
@ -239,17 +232,6 @@ module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of)
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation
enddo enddo
F(1:3,1:3,iGrain) = F(1:3,1:3,iGrain) + avgF ! resulting relaxed deformation gradient F(1:3,1:3,iGrain) = F(1:3,1:3,iGrain) + avgF ! resulting relaxed deformation gradient
#ifdef DEBUG
if (debugHomog%extensive) then
print'(a,i3)',' Deformation gradient of grain: ',iGrain
do i = 1,3
print'(1x,3(e15.8,1x))',(F(i,j,iGrain), j = 1,3)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
enddo enddo
end associate end associate
@ -261,7 +243,18 @@ end subroutine mech_RGC_partitionDeformation
!> @brief update the internal state of the homogenization scheme and tell whether "done" and !> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result ! "happy" with result
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module procedure mech_RGC_updateState module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
F,& !< partitioned deformation gradients
F0 !< partitioned initial deformation gradients
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, dimension(4) :: intFaceN,intFaceP,faceID integer, dimension(4) :: intFaceN,intFaceP,faceID
integer, dimension(3) :: nGDim,iGr3N,iGr3P integer, dimension(3) :: nGDim,iGr3N,iGr3P
@ -273,13 +266,9 @@ module procedure mech_RGC_updateState
logical :: error logical :: error
real(pReal), dimension(:,:), allocatable :: tract,jmatrix,jnverse,smatrix,pmatrix,rmatrix real(pReal), dimension(:,:), allocatable :: tract,jmatrix,jnverse,smatrix,pmatrix,rmatrix
real(pReal), dimension(:), allocatable :: resid,relax,p_relax,p_resid,drelax real(pReal), dimension(:), allocatable :: resid,relax,p_relax,p_resid,drelax
#ifdef DEBUG
integer, dimension(3) :: stresLoc
integer, dimension(2) :: residLoc
#endif
zeroTimeStep: if(dEq0(dt)) then zeroTimeStep: if(dEq0(dt)) then
mech_RGC_updateState = .true. ! pretend everything is fine and return doneAndHappy = .true. ! pretend everything is fine and return
return return
endif zeroTimeStep endif zeroTimeStep
@ -303,16 +292,6 @@ module procedure mech_RGC_updateState
relax = stt%relaxationVector(:,of) relax = stt%relaxationVector(:,of)
drelax = stt%relaxationVector(:,of) - st0%relaxationVector(:,of) drelax = stt%relaxationVector(:,of) - st0%relaxationVector(:,of)
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Obtained state: '
do i = 1,size(stt%relaxationVector(:,of))
print'(1x,2(e15.8,1x))', stt%relaxationVector(i,of)
enddo
print*,' '
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! computing interface mismatch and stress penalty tensor for all interfaces of all grains ! computing interface mismatch and stress penalty tensor for all interfaces of all grains
call stressPenalty(R,NN,avgF,F,ip,el,instance,of) call stressPenalty(R,NN,avgF,F,ip,el,instance,of)
@ -353,13 +332,6 @@ module procedure mech_RGC_updateState
enddo enddo
enddo enddo
#ifdef DEBUG
if (debugHomog%extensive) then
print'(a,i3)',' Traction at interface: ',iNum
print'(1x,3(e15.8,1x))',(tract(iNum,j), j = 1,3)
print*,' '
endif
#endif
enddo enddo
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -367,29 +339,12 @@ module procedure mech_RGC_updateState
stresMax = maxval(abs(P)) ! get the maximum of first Piola-Kirchhoff (material) stress stresMax = maxval(abs(P)) ! get the maximum of first Piola-Kirchhoff (material) stress
residMax = maxval(abs(tract)) ! get the maximum of the residual residMax = maxval(abs(tract)) ! get the maximum of the residual
#ifdef DEBUG doneAndHappy = .false.
if (debugHomog%extensive .and. prm%of_debug == of) then
stresLoc = maxloc(abs(P))
residLoc = maxloc(abs(tract))
print'(a,i2,1x,i4)',' RGC residual check ... ',ip,el
print'(a,e15.8,a,i3,a,i2,i2)', ' Max stress: ',stresMax, &
'@ grain ',stresLoc(3),' in component ',stresLoc(1),stresLoc(2)
print'(a,e15.8,a,i3,a,i2)',' Max residual: ',residMax, &
' @ iface ',residLoc(1),' in direction ',residLoc(2)
flush(IO_STDOUT)
endif
#endif
mech_RGC_updateState = .false.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! If convergence reached => done and happy ! If convergence reached => done and happy
if (residMax < num%rtol*stresMax .or. residMax < num%atol) then if (residMax < num%rtol*stresMax .or. residMax < num%atol) then
mech_RGC_updateState = .true. doneAndHappy = .true.
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) &
print*, '... done and happy'; flush(IO_STDOUT)
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! compute/update the state for postResult, i.e., all energy densities computed by time-integration ! compute/update the state for postResult, i.e., all energy densities computed by time-integration
@ -406,41 +361,14 @@ module procedure mech_RGC_updateState
dst%relaxationRate_avg(of) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal) dst%relaxationRate_avg(of) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(of) = maxval(abs(drelax))/dt dst%relaxationRate_max(of) = maxval(abs(drelax))/dt
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) then
print'(a,e15.8)', ' Constitutive work: ',stt%work(of)
print'(a,3(1x,e15.8))', ' Magnitude mismatch: ',dst%mismatch(1,of), &
dst%mismatch(2,of), &
dst%mismatch(3,of)
print'(a,e15.8)', ' Penalty energy: ', stt%penaltyEnergy(of)
print'(a,e15.8,/)', ' Volume discrepancy: ', dst%volumeDiscrepancy(of)
print'(a,e15.8)', ' Maximum relaxation rate: ', dst%relaxationRate_max(of)
print'(a,e15.8,/)', ' Average relaxation rate: ', dst%relaxationRate_avg(of)
flush(IO_STDOUT)
endif
#endif
return return
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! if residual blows-up => done but unhappy ! if residual blows-up => done but unhappy
elseif (residMax > num%relMax*stresMax .or. residMax > num%absMax) then ! try to restart when residual blows up exceeding maximum bound elseif (residMax > num%relMax*stresMax .or. residMax > num%absMax) then ! try to restart when residual blows up exceeding maximum bound
mech_RGC_updateState = [.true.,.false.] ! with direct cut-back doneAndHappy = [.true.,.false.] ! with direct cut-back
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) &
print'(a,/)', ' ... broken'; flush(IO_STDOUT)
#endif
return return
endif
else ! proceed with computing the Jacobian and state update
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) &
print'(a,/)', ' ... not yet done'; flush(IO_STDOUT)
#endif
endif
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
! construct the global Jacobian matrix for updating the global relaxation vector array when ! construct the global Jacobian matrix for updating the global relaxation vector array when
@ -492,17 +420,6 @@ module procedure mech_RGC_updateState
enddo enddo
enddo enddo
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Jacobian matrix of stress'
do i = 1,3*nIntFaceTot
print'(1x,100(e11.4,1x))',(smatrix(i,j), j = 1,3*nIntFaceTot)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! ... of the stress penalty tangent (mismatch penalty and volume penalty, computed using numerical ! ... of the stress penalty tangent (mismatch penalty and volume penalty, computed using numerical
! perturbation method) "pmatrix" ! perturbation method) "pmatrix"
@ -552,16 +469,6 @@ module procedure mech_RGC_updateState
pmatrix(:,ipert) = p_resid/num%pPert pmatrix(:,ipert) = p_resid/num%pPert
enddo enddo
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Jacobian matrix of penalty'
do i = 1,3*nIntFaceTot
print'(1x,100(e11.4,1x))',(pmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! ... of the numerical viscosity traction "rmatrix" ! ... of the numerical viscosity traction "rmatrix"
@ -571,48 +478,16 @@ module procedure mech_RGC_updateState
(abs(drelax(i))/(num%refRelaxRate*dt))**(num%viscPower - 1.0_pReal) ! only in the main diagonal term (abs(drelax(i))/(num%refRelaxRate*dt))**(num%viscPower - 1.0_pReal) ! only in the main diagonal term
enddo enddo
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Jacobian matrix of penalty'
do i = 1,3*nIntFaceTot
print'(1x,100(e11.4,1x))',(rmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! The overall Jacobian matrix summarizing contributions of smatrix, pmatrix, rmatrix ! The overall Jacobian matrix summarizing contributions of smatrix, pmatrix, rmatrix
allocate(jmatrix(3*nIntFaceTot,3*nIntFaceTot)); jmatrix = smatrix + pmatrix + rmatrix allocate(jmatrix(3*nIntFaceTot,3*nIntFaceTot)); jmatrix = smatrix + pmatrix + rmatrix
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Jacobian matrix (total)'
do i = 1,3*nIntFaceTot
print'(1x,100(e11.4,1x))',(jmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! computing the update of the state variable (relaxation vectors) using the Jacobian matrix ! computing the update of the state variable (relaxation vectors) using the Jacobian matrix
allocate(jnverse(3*nIntFaceTot,3*nIntFaceTot),source=0.0_pReal) allocate(jnverse(3*nIntFaceTot,3*nIntFaceTot),source=0.0_pReal)
call math_invert(jnverse,error,jmatrix) call math_invert(jnverse,error,jmatrix)
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Jacobian inverse'
do i = 1,3*nIntFaceTot
print'(1x,100(e11.4,1x))',(jnverse(i,j), j = 1,3*nIntFaceTot)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculate the state update (global relaxation vectors) for the next Newton-Raphson iteration ! calculate the state update (global relaxation vectors) for the next Newton-Raphson iteration
drelax = 0.0_pReal drelax = 0.0_pReal
@ -621,7 +496,7 @@ module procedure mech_RGC_updateState
enddo; enddo enddo; enddo
stt%relaxationVector(:,of) = relax + drelax ! Updateing the state variable for the next iteration stt%relaxationVector(:,of) = relax + drelax ! Updateing the state variable for the next iteration
if (any(abs(drelax) > num%maxdRelax)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large if (any(abs(drelax) > num%maxdRelax)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large
mech_RGC_updateState = [.true.,.false.] doneAndHappy = [.true.,.false.]
!$OMP CRITICAL (write2out) !$OMP CRITICAL (write2out)
print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback' print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback'
print'(a,e15.8)',' due to large relaxation change = ',maxval(abs(drelax)) print'(a,e15.8)',' due to large relaxation change = ',maxval(abs(drelax))
@ -629,17 +504,6 @@ module procedure mech_RGC_updateState
!$OMP END CRITICAL (write2out) !$OMP END CRITICAL (write2out)
endif endif
#ifdef DEBUG
if (debugHomog%extensive) then
print*, 'Returned state: '
do i = 1,size(stt%relaxationVector(:,of))
print'(1x,2(e15.8,1x))', stt%relaxationVector(i,of)
enddo
print*,' '
flush(IO_STDOUT)
endif
#endif
end associate end associate
contains contains
@ -661,8 +525,10 @@ module procedure mech_RGC_updateState
real(pReal), dimension (3) :: nVect,surfCorr real(pReal), dimension (3) :: nVect,surfCorr
real(pReal), dimension (2) :: Gmoduli real(pReal), dimension (2) :: Gmoduli
integer :: iGrain,iGNghb,iFace,i,j,k,l integer :: iGrain,iGNghb,iFace,i,j,k,l
real(pReal) :: muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb real(pReal) :: muGrain,muGNghb,nDefNorm
real(pReal), parameter :: nDefToler = 1.0e-10_pReal real(pReal), parameter :: &
nDefToler = 1.0e-10_pReal, &
b = 2.5e-10_pReal ! Length of Burgers vector
nGDim = param(instance)%N_constituents nGDim = param(instance)%N_constituents
rPen = 0.0_pReal rPen = 0.0_pReal
@ -676,19 +542,11 @@ module procedure mech_RGC_updateState
associate(prm => param(instance)) associate(prm => param(instance))
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) then
print'(a,2(1x,i3))', ' Correction factor: ',ip,el
print*, surfCorr
endif
#endif
!----------------------------------------------------------------------------------------------- !-----------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains ! computing the mismatch and penalty stress tensor of all grains
grainLoop: do iGrain = 1,product(prm%N_constituents) grainLoop: do iGrain = 1,product(prm%N_constituents)
Gmoduli = equivalentModuli(iGrain,ip,el) muGrain = equivalentMu(iGrain,ip,el)
muGrain = Gmoduli(1) ! collecting the equivalent shear modulus of grain
bgGrain = Gmoduli(2) ! and the lengthh of Burgers vector
iGrain3 = grain1to3(iGrain,prm%N_constituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position iGrain3 = grain1to3(iGrain,prm%N_constituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
interfaceLoop: do iFace = 1,6 interfaceLoop: do iFace = 1,6
@ -700,9 +558,7 @@ module procedure mech_RGC_updateState
where(iGNghb3 < 1) iGNghb3 = nGDim where(iGNghb3 < 1) iGNghb3 = nGDim
where(iGNghb3 >nGDim) iGNghb3 = 1 where(iGNghb3 >nGDim) iGNghb3 = 1
iGNghb = grain3to1(iGNghb3,prm%N_constituents) ! get the ID of the neighboring grain iGNghb = grain3to1(iGNghb3,prm%N_constituents) ! get the ID of the neighboring grain
Gmoduli = equivalentModuli(iGNghb,ip,el) ! collect the shear modulus and Burgers vector of the neighbor muGNghb = equivalentMu(iGNghb,ip,el)
muGNghb = Gmoduli(1)
bgGNghb = Gmoduli(2)
gDef = 0.5_pReal*(fDef(1:3,1:3,iGNghb) - fDef(1:3,1:3,iGrain)) ! difference/jump in deformation gradeint across the neighbor gDef = 0.5_pReal*(fDef(1:3,1:3,iGNghb) - fDef(1:3,1:3,iGrain)) ! difference/jump in deformation gradeint across the neighbor
!------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------
@ -717,30 +573,19 @@ module procedure mech_RGC_updateState
enddo; enddo enddo; enddo
nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! approximation to zero mismatch if mismatch is zero (singularity) nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! approximation to zero mismatch if mismatch is zero (singularity)
nMis(abs(intFace(1)),iGrain) = nMis(abs(intFace(1)),iGrain) + nDefNorm ! total amount of mismatch experienced by the grain (at all six interfaces) nMis(abs(intFace(1)),iGrain) = nMis(abs(intFace(1)),iGrain) + nDefNorm ! total amount of mismatch experienced by the grain (at all six interfaces)
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) then
print'(a,i2,a,i3)',' Mismatch to face: ',intFace(1),' neighbor grain: ',iGNghb
print*, transpose(nDef)
print'(a,e11.4)', ' with magnitude: ',nDefNorm
endif
#endif
!------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------
! compute the stress penalty of all interfaces ! compute the stress penalty of all interfaces
do i = 1,3; do j = 1,3; do k = 1,3; do l = 1,3 do i = 1,3; do j = 1,3; do k = 1,3; do l = 1,3
rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*prm%xi_alpha & rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*b + muGNghb*b)*prm%xi_alpha &
*surfCorr(abs(intFace(1)))/prm%D_alpha(abs(intFace(1))) & *surfCorr(abs(intFace(1)))/prm%D_alpha(abs(intFace(1))) &
*cosh(prm%c_alpha*nDefNorm) & *cosh(prm%c_alpha*nDefNorm) &
*0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_LeviCivita(k,l,j) & *0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_LeviCivita(k,l,j) &
*tanh(nDefNorm/num%xSmoo) *tanh(nDefNorm/num%xSmoo)
enddo; enddo;enddo; enddo enddo; enddo;enddo; enddo
enddo interfaceLoop enddo interfaceLoop
#ifdef DEBUG
if (debugHomog%extensive .and. prm%of_debug == of) then
print'(a,i2)', ' Penalty of grain: ',iGrain
print*, transpose(rPen(1:3,1:3,iGrain))
endif
#endif
enddo grainLoop enddo grainLoop
@ -783,13 +628,6 @@ module procedure mech_RGC_updateState
vPen(:,:,i) = -1.0_pReal/real(nGrain,pReal)*num%volDiscrMod*num%volDiscrPow/num%maxVolDiscr* & vPen(:,:,i) = -1.0_pReal/real(nGrain,pReal)*num%volDiscrMod*num%volDiscrPow/num%maxVolDiscr* &
sign((abs(vDiscrep)/num%maxVolDiscr)**(num%volDiscrPow - 1.0),vDiscrep)* & sign((abs(vDiscrep)/num%maxVolDiscr)**(num%volDiscrPow - 1.0),vDiscrep)* &
gVol(i)*transpose(math_inv33(fDef(:,:,i))) gVol(i)*transpose(math_inv33(fDef(:,:,i)))
#ifdef DEBUG
if (debugHomog%extensive .and. param(instance)%of_debug == of) then
print'(a,i2)',' Volume penalty of grain: ',i
print*, transpose(vPen(:,:,i))
endif
#endif
enddo enddo
end subroutine volumePenalty end subroutine volumePenalty
@ -827,44 +665,26 @@ module procedure mech_RGC_updateState
end function surfaceCorrection end function surfaceCorrection
!-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
!> @brief compute the equivalent shear and bulk moduli from the elasticity tensor !> @brief compute the equivalent shear and bulk moduli from the elasticity tensor
!-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
function equivalentModuli(grainID,ip,el) real(pReal) function equivalentMu(grainID,ip,el)
real(pReal), dimension(2) :: equivalentModuli
integer, intent(in) :: & integer, intent(in) :: &
grainID,& grainID,&
ip, & !< integration point number ip, & !< integration point number
el !< element number el !< element number
real(pReal), dimension(6,6) :: elasTens
real(pReal) :: &
cEquiv_11, &
cEquiv_12, &
cEquiv_44
elasTens = constitutive_homogenizedC(grainID,ip,el)
!----------------------------------------------------------------------------------------------
! compute the equivalent shear modulus after Turterltaub and Suiker, JMPS (2005)
cEquiv_11 = (elasTens(1,1) + elasTens(2,2) + elasTens(3,3))/3.0_pReal
cEquiv_12 = (elasTens(1,2) + elasTens(2,3) + elasTens(3,1) + &
elasTens(1,3) + elasTens(2,1) + elasTens(3,2))/6.0_pReal
cEquiv_44 = (elasTens(4,4) + elasTens(5,5) + elasTens(6,6))/3.0_pReal
equivalentModuli(1) = 0.2_pReal*(cEquiv_11 - cEquiv_12) + 0.6_pReal*cEquiv_44
!----------------------------------------------------------------------------------------------
! obtain the length of Burgers vector (could be model dependend)
equivalentModuli(2) = 2.5e-10_pReal
end function equivalentModuli
!-------------------------------------------------------------------------------------------------- equivalentMu = lattice_equivalent_mu(constitutive_homogenizedC(grainID,ip,el),'voigt')
end function equivalentMu
!-------------------------------------------------------------------------------------------------
!> @brief calculating the grain deformation gradient (the same with !> @brief calculating the grain deformation gradient (the same with
! homogenization_RGC_partitionDeformation, but used only for perturbation scheme) ! homogenization_RGC_partitionDeformation, but used only for perturbation scheme)
!-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
subroutine grainDeformation(F, avgF, instance, of) subroutine grainDeformation(F, avgF, instance, of)
real(pReal), dimension(:,:,:), intent(out) :: F !< partitioned F per grain real(pReal), dimension(:,:,:), intent(out) :: F !< partitioned F per grain
@ -879,7 +699,7 @@ module procedure mech_RGC_updateState
integer, dimension(3) :: iGrain3 integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j integer :: iGrain,iFace,i,j
!------------------------------------------------------------------------------------------------- !-----------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations ! compute the deformation gradient of individual grains due to relaxations
associate(prm => param(instance)) associate(prm => param(instance))
@ -901,7 +721,7 @@ module procedure mech_RGC_updateState
end subroutine grainDeformation end subroutine grainDeformation
end procedure mech_RGC_updateState end function mech_RGC_updateState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------

View File

@ -99,10 +99,10 @@ end function kinematics_cleavage_opening_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient !> @brief contains the constitutive equation for calculating the velocity gradient
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S, ipc, ip, el) module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S, co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< grain number co, & !< grain number
ip, & !< integration point number ip, & !< integration point number
el !< element number el !< element number
real(pReal), intent(in), dimension(3,3) :: & real(pReal), intent(in), dimension(3,3) :: &
@ -124,7 +124,7 @@ module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S,
Ld = 0.0_pReal Ld = 0.0_pReal
dLd_dTstar = 0.0_pReal dLd_dTstar = 0.0_pReal
associate(prm => param(kinematics_cleavage_opening_instance(material_phaseAt(ipc,el)))) associate(prm => param(kinematics_cleavage_opening_instance(material_phaseAt(co,el))))
do i = 1,prm%sum_N_cl do i = 1,prm%sum_N_cl
traction_crit = prm%g_crit(i)* damage(homog)%p(damageOffset)**2.0_pReal traction_crit = prm%g_crit(i)* damage(homog)%p(damageOffset)**2.0_pReal

View File

@ -117,10 +117,10 @@ end function kinematics_slipplane_opening_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient !> @brief contains the constitutive equation for calculating the velocity gradient
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S, ipc, ip, el) module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S, co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< grain number co, & !< grain number
ip, & !< integration point number ip, & !< integration point number
el !< element number el !< element number
real(pReal), intent(in), dimension(3,3) :: & real(pReal), intent(in), dimension(3,3) :: &
@ -138,7 +138,7 @@ module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S
traction_d, traction_t, traction_n, traction_crit, & traction_d, traction_t, traction_n, traction_crit, &
udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt
phase = material_phaseAt(ipc,el) phase = material_phaseAt(co,el)
instance = kinematics_slipplane_opening_instance(phase) instance = kinematics_slipplane_opening_instance(phase)
homog = material_homogenizationAt(el) homog = material_homogenizationAt(el)
damageOffset = material_homogenizationMemberAt(ip,el) damageOffset = material_homogenizationMemberAt(ip,el)

View File

@ -84,10 +84,10 @@ end function kinematics_thermal_expansion_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief constitutive equation for calculating the velocity gradient !> @brief constitutive equation for calculating the velocity gradient
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, ipc, ip, el) module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< grain number co, & !< grain number
ip, & !< integration point number ip, & !< integration point number
el !< element number el !< element number
real(pReal), intent(out), dimension(3,3) :: & real(pReal), intent(out), dimension(3,3) :: &
@ -101,7 +101,7 @@ module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, i
real(pReal) :: & real(pReal) :: &
T, TDot T, TDot
phase = material_phaseAt(ipc,el) phase = material_phaseAt(co,el)
homog = material_homogenizationAt(el) homog = material_homogenizationAt(el)
T = temperature(homog)%p(material_homogenizationMemberAt(ip,el)) T = temperature(homog)%p(material_homogenizationMemberAt(ip,el))
TDot = temperatureRate(homog)%p(material_homogenizationMemberAt(ip,el)) TDot = temperatureRate(homog)%p(material_homogenizationMemberAt(ip,el))

View File

@ -421,6 +421,8 @@ module lattice
lattice_BCT_ID, & lattice_BCT_ID, &
lattice_HEX_ID, & lattice_HEX_ID, &
lattice_ORT_ID, & lattice_ORT_ID, &
lattice_equivalent_nu, &
lattice_equivalent_mu, &
lattice_applyLatticeSymmetry33, & lattice_applyLatticeSymmetry33, &
lattice_SchmidMatrix_slip, & lattice_SchmidMatrix_slip, &
lattice_SchmidMatrix_twin, & lattice_SchmidMatrix_twin, &
@ -508,8 +510,8 @@ subroutine lattice_init
lattice_C66(1:6,1:6,p) = applyLatticeSymmetryC66(lattice_C66(1:6,1:6,p),phase%get_asString('lattice')) lattice_C66(1:6,1:6,p) = applyLatticeSymmetryC66(lattice_C66(1:6,1:6,p),phase%get_asString('lattice'))
lattice_mu(p) = equivalent_mu(lattice_C66(1:6,1:6,p),'voigt') lattice_nu(p) = lattice_equivalent_nu(lattice_C66(1:6,1:6,p),'voigt')
lattice_nu(p) = equivalent_nu(lattice_C66(1:6,1:6,p),'voigt') lattice_mu(p) = lattice_equivalent_mu(lattice_C66(1:6,1:6,p),'voigt')
lattice_C66(1:6,1:6,p) = math_sym3333to66(math_Voigt66to3333(lattice_C66(1:6,1:6,p))) ! Literature data is in Voigt notation lattice_C66(1:6,1:6,p) = math_sym3333to66(math_Voigt66to3333(lattice_C66(1:6,1:6,p))) ! Literature data is in Voigt notation
do i = 1, 6 do i = 1, 6
@ -2188,15 +2190,16 @@ end function getlabels
!> @brief Equivalent Poisson's ratio (ν) !> @brief Equivalent Poisson's ratio (ν)
!> @details https://doi.org/10.1143/JPSJ.20.635 !> @details https://doi.org/10.1143/JPSJ.20.635
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function equivalent_nu(C,assumption) result(nu) function lattice_equivalent_nu(C,assumption) result(nu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation) real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=*), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress) character(len=*), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
real(pReal) :: K, mu, nu real(pReal) :: K, mu, nu
logical :: error logical :: error
real(pReal), dimension(6,6) :: S real(pReal), dimension(6,6) :: S
if (IO_lc(assumption) == 'voigt') then if (IO_lc(assumption) == 'voigt') then
K = (C(1,1)+C(2,2)+C(3,3) +2.0_pReal*(C(1,2)+C(2,3)+C(1,3))) & K = (C(1,1)+C(2,2)+C(3,3) +2.0_pReal*(C(1,2)+C(2,3)+C(1,3))) &
/ 9.0_pReal / 9.0_pReal
@ -2210,25 +2213,26 @@ function equivalent_nu(C,assumption) result(nu)
K = 0.0_pReal K = 0.0_pReal
endif endif
mu = equivalent_mu(C,assumption) mu = lattice_equivalent_mu(C,assumption)
nu = (1.5_pReal*K -mu)/(3.0_pReal*K+mu) nu = (1.5_pReal*K -mu)/(3.0_pReal*K+mu)
end function equivalent_nu end function lattice_equivalent_nu
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Equivalent shear modulus (μ) !> @brief Equivalent shear modulus (μ)
!> @details https://doi.org/10.1143/JPSJ.20.635 !> @details https://doi.org/10.1143/JPSJ.20.635
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function equivalent_mu(C,assumption) result(mu) function lattice_equivalent_mu(C,assumption) result(mu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation) real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=*), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress) character(len=*), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
real(pReal) :: mu real(pReal) :: mu
logical :: error logical :: error
real(pReal), dimension(6,6) :: S real(pReal), dimension(6,6) :: S
if (IO_lc(assumption) == 'voigt') then if (IO_lc(assumption) == 'voigt') then
mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) & mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) &
/ 15.0_pReal / 15.0_pReal
@ -2242,7 +2246,7 @@ function equivalent_mu(C,assumption) result(mu)
mu = 0.0_pReal mu = 0.0_pReal
endif endif
end function equivalent_mu end function lattice_equivalent_mu
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -2266,14 +2270,14 @@ subroutine selfTest
call random_number(C) call random_number(C)
C(1,1) = C(1,1) + 1.0_pReal C(1,1) = C(1,1) + 1.0_pReal
C = applyLatticeSymmetryC66(C,'aP') C = applyLatticeSymmetryC66(C,'aP')
if(dNeq(C(6,6),equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt' if(dNeq(C(6,6),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt'
if(dNeq(C(6,6),equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss' if(dNeq(C(6,6),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss'
lambda = C(1,2) lambda = C(1,2)
if(dNeq(lambda*0.5_pReal/(lambda+equivalent_mu(C,'voigt')),equivalent_nu(C,'voigt'),1.0e-12_pReal)) & if(dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'voigt')), &
error stop 'equivalent_nu/voigt' lattice_equivalent_nu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_nu/voigt'
if(dNeq(lambda*0.5_pReal/(lambda+equivalent_mu(C,'reuss')),equivalent_nu(C,'reuss'),1.0e-12_pReal)) & if(dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'reuss')), &
error stop 'equivalent_nu/reuss' lattice_equivalent_nu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_nu/reuss'
end subroutine selfTest end subroutine selfTest

View File

@ -12,7 +12,6 @@ module discretization_marc
use DAMASK_interface use DAMASK_interface
use IO use IO
use config use config
use FEsolving
use element use element
use discretization use discretization
use geometry_plastic_nonlocal use geometry_plastic_nonlocal
@ -89,9 +88,6 @@ subroutine discretization_marc_init
if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element') if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element')
if (debug_i < 1 .or. debug_i > elem%nIPs) call IO_error(602,ext_msg='IP') if (debug_i < 1 .or. debug_i > elem%nIPs) call IO_error(602,ext_msg='IP')
FEsolving_execElem = [1,nElems]
FEsolving_execIP = [1,elem%nIPs]
allocate(cellNodeDefinition(elem%nNodes-1)) allocate(cellNodeDefinition(elem%nNodes-1))
allocate(connectivity_cell(elem%NcellNodesPerCell,elem%nIPs,nElems)) allocate(connectivity_cell(elem%NcellNodesPerCell,elem%nIPs,nElems))
call buildCells(connectivity_cell,cellNodeDefinition,& call buildCells(connectivity_cell,cellNodeDefinition,&

View File

@ -17,29 +17,6 @@ module material
private private
enum, bind(c); enumerator :: & enum, bind(c); enumerator :: &
ELASTICITY_UNDEFINED_ID, &
ELASTICITY_HOOKE_ID, &
PLASTICITY_UNDEFINED_ID, &
PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_KINEHARDENING_ID, &
PLASTICITY_DISLOTWIN_ID, &
PLASTICITY_DISLOTUNGSTEN_ID, &
PLASTICITY_NONLOCAL_ID, &
SOURCE_UNDEFINED_ID ,&
SOURCE_THERMAL_DISSIPATION_ID, &
SOURCE_THERMAL_EXTERNALHEAT_ID, &
SOURCE_DAMAGE_ISOBRITTLE_ID, &
SOURCE_DAMAGE_ISODUCTILE_ID, &
SOURCE_DAMAGE_ANISOBRITTLE_ID, &
SOURCE_DAMAGE_ANISODUCTILE_ID, &
KINEMATICS_UNDEFINED_ID ,&
KINEMATICS_CLEAVAGE_OPENING_ID, &
KINEMATICS_SLIPPLANE_OPENING_ID, &
KINEMATICS_THERMAL_EXPANSION_ID, &
STIFFNESS_DEGRADATION_UNDEFINED_ID, &
STIFFNESS_DEGRADATION_DAMAGE_ID, &
THERMAL_ISOTHERMAL_ID, & THERMAL_ISOTHERMAL_ID, &
THERMAL_CONDUCTION_ID, & THERMAL_CONDUCTION_ID, &
DAMAGE_NONE_ID, & DAMAGE_NONE_ID, &
@ -96,29 +73,6 @@ module material
public :: & public :: &
material_init, & material_init, &
ELASTICITY_UNDEFINED_ID, &
ELASTICITY_HOOKE_ID, &
PLASTICITY_UNDEFINED_ID, &
PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_KINEHARDENING_ID, &
PLASTICITY_DISLOTWIN_ID, &
PLASTICITY_DISLOTUNGSTEN_ID, &
PLASTICITY_NONLOCAL_ID, &
SOURCE_UNDEFINED_ID ,&
SOURCE_THERMAL_DISSIPATION_ID, &
SOURCE_THERMAL_EXTERNALHEAT_ID, &
SOURCE_DAMAGE_ISOBRITTLE_ID, &
SOURCE_DAMAGE_ISODUCTILE_ID, &
SOURCE_DAMAGE_ANISOBRITTLE_ID, &
SOURCE_DAMAGE_ANISODUCTILE_ID, &
KINEMATICS_UNDEFINED_ID ,&
KINEMATICS_CLEAVAGE_OPENING_ID, &
KINEMATICS_SLIPPLANE_OPENING_ID, &
KINEMATICS_THERMAL_EXPANSION_ID, &
STIFFNESS_DEGRADATION_UNDEFINED_ID, &
STIFFNESS_DEGRADATION_DAMAGE_ID, &
THERMAL_ISOTHERMAL_ID, & THERMAL_ISOTHERMAL_ID, &
THERMAL_CONDUCTION_ID, & THERMAL_CONDUCTION_ID, &
DAMAGE_NONE_ID, & DAMAGE_NONE_ID, &

View File

@ -279,9 +279,12 @@ real(pReal) pure function math_LeviCivita(i,j,k)
integer, intent(in) :: i,j,k integer, intent(in) :: i,j,k
if (all([i,j,k] == [1,2,3]) .or. all([i,j,k] == [2,3,1]) .or. all([i,j,k] == [3,1,2])) then integer :: o
if (any([(all(cshift([i,j,k],o) == [1,2,3]),o=0,2)])) then
math_LeviCivita = +1.0_pReal math_LeviCivita = +1.0_pReal
elseif (all([i,j,k] == [3,2,1]) .or. all([i,j,k] == [2,1,3]) .or. all([i,j,k] == [1,3,2])) then elseif (any([(all(cshift([i,j,k],o) == [3,2,1]),o=0,2)])) then
math_LeviCivita = -1.0_pReal math_LeviCivita = -1.0_pReal
else else
math_LeviCivita = 0.0_pReal math_LeviCivita = 0.0_pReal

View File

@ -15,7 +15,6 @@ program DAMASK_mesh
use IO use IO
use math use math
use CPFEM2 use CPFEM2
use FEsolving
use config use config
use discretization_mesh use discretization_mesh
use FEM_Utilities use FEM_Utilities

View File

@ -160,7 +160,7 @@ subroutine utilities_constitutiveResponse(timeinc,P_av,forwardData)
print'(/,a)', ' ... evaluating constitutive response ......................................' print'(/,a)', ' ... evaluating constitutive response ......................................'
call materialpoint_stressAndItsTangent(timeinc) ! calculate P field call materialpoint_stressAndItsTangent(timeinc,[1,mesh_maxNips],[1,mesh_NcpElems]) ! calculate P field
cutBack = .false. ! reset cutBack status cutBack = .false. ! reset cutBack status

View File

@ -18,7 +18,6 @@ module discretization_mesh
use config use config
use discretization use discretization
use results use results
use FEsolving
use FEM_quadrature use FEM_quadrature
use YAML_types use YAML_types
use prec use prec
@ -30,7 +29,7 @@ module discretization_mesh
mesh_Nboundaries, & mesh_Nboundaries, &
mesh_NcpElemsGlobal mesh_NcpElemsGlobal
integer :: & integer, public, protected :: &
mesh_NcpElems !< total number of CP elements in mesh mesh_NcpElems !< total number of CP elements in mesh
!!!! BEGIN DEPRECATED !!!!! !!!! BEGIN DEPRECATED !!!!!
@ -174,9 +173,6 @@ subroutine discretization_mesh_init(restart)
if (debug_element < 1 .or. debug_element > mesh_NcpElems) call IO_error(602,ext_msg='element') if (debug_element < 1 .or. debug_element > mesh_NcpElems) call IO_error(602,ext_msg='element')
if (debug_ip < 1 .or. debug_ip > mesh_maxNips) call IO_error(602,ext_msg='IP') if (debug_ip < 1 .or. debug_ip > mesh_maxNips) call IO_error(602,ext_msg='IP')
FEsolving_execElem = [1,mesh_NcpElems] ! parallel loop bounds set to comprise all DAMASK elements
FEsolving_execIP = [1,mesh_maxNips]
allocate(mesh_node0(3,mesh_Nnodes),source=0.0_pReal) allocate(mesh_node0(3,mesh_Nnodes),source=0.0_pReal)
call discretization_init(materialAt,& call discretization_init(materialAt,&

View File

@ -108,8 +108,10 @@ logical elemental pure function dEq(a,b,tol)
real(pReal), intent(in) :: a,b real(pReal), intent(in) :: a,b
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
real(pReal) :: eps real(pReal) :: eps
if (present(tol)) then if (present(tol)) then
eps = tol eps = tol
else else
@ -132,11 +134,8 @@ logical elemental pure function dNeq(a,b,tol)
real(pReal), intent(in) :: a,b real(pReal), intent(in) :: a,b
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
if (present(tol)) then
dNeq = .not. dEq(a,b,tol) dNeq = .not. dEq(a,b,tol)
else
dNeq = .not. dEq(a,b)
endif
end function dNeq end function dNeq
@ -151,8 +150,10 @@ logical elemental pure function dEq0(a,tol)
real(pReal), intent(in) :: a real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
real(pReal) :: eps real(pReal) :: eps
if (present(tol)) then if (present(tol)) then
eps = tol eps = tol
else else
@ -175,11 +176,8 @@ logical elemental pure function dNeq0(a,tol)
real(pReal), intent(in) :: a real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
if (present(tol)) then
dNeq0 = .not. dEq0(a,tol) dNeq0 = .not. dEq0(a,tol)
else
dNeq0 = .not. dEq0(a)
endif
end function dNeq0 end function dNeq0
@ -195,8 +193,10 @@ logical elemental pure function cEq(a,b,tol)
complex(pReal), intent(in) :: a,b complex(pReal), intent(in) :: a,b
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
real(pReal) :: eps real(pReal) :: eps
if (present(tol)) then if (present(tol)) then
eps = tol eps = tol
else else
@ -220,11 +220,8 @@ logical elemental pure function cNeq(a,b,tol)
complex(pReal), intent(in) :: a,b complex(pReal), intent(in) :: a,b
real(pReal), intent(in), optional :: tol real(pReal), intent(in), optional :: tol
if (present(tol)) then
cNeq = .not. cEq(a,b,tol) cNeq = .not. cEq(a,b,tol)
else
cNeq = .not. cEq(a,b)
endif
end function cNeq end function cNeq
@ -238,6 +235,7 @@ pure function prec_bytesToC_FLOAT(bytes)
real(C_FLOAT), dimension(size(bytes,kind=pI64)/(storage_size(0._C_FLOAT,pI64)/8_pI64)) :: & real(C_FLOAT), dimension(size(bytes,kind=pI64)/(storage_size(0._C_FLOAT,pI64)/8_pI64)) :: &
prec_bytesToC_FLOAT prec_bytesToC_FLOAT
prec_bytesToC_FLOAT = transfer(bytes,prec_bytesToC_FLOAT,size(prec_bytesToC_FLOAT)) prec_bytesToC_FLOAT = transfer(bytes,prec_bytesToC_FLOAT,size(prec_bytesToC_FLOAT))
end function prec_bytesToC_FLOAT end function prec_bytesToC_FLOAT
@ -252,6 +250,7 @@ pure function prec_bytesToC_DOUBLE(bytes)
real(C_DOUBLE), dimension(size(bytes,kind=pI64)/(storage_size(0._C_DOUBLE,pI64)/8_pI64)) :: & real(C_DOUBLE), dimension(size(bytes,kind=pI64)/(storage_size(0._C_DOUBLE,pI64)/8_pI64)) :: &
prec_bytesToC_DOUBLE prec_bytesToC_DOUBLE
prec_bytesToC_DOUBLE = transfer(bytes,prec_bytesToC_DOUBLE,size(prec_bytesToC_DOUBLE)) prec_bytesToC_DOUBLE = transfer(bytes,prec_bytesToC_DOUBLE,size(prec_bytesToC_DOUBLE))
end function prec_bytesToC_DOUBLE end function prec_bytesToC_DOUBLE
@ -266,6 +265,7 @@ pure function prec_bytesToC_INT32_T(bytes)
integer(C_INT32_T), dimension(size(bytes,kind=pI64)/(storage_size(0_C_INT32_T,pI64)/8_pI64)) :: & integer(C_INT32_T), dimension(size(bytes,kind=pI64)/(storage_size(0_C_INT32_T,pI64)/8_pI64)) :: &
prec_bytesToC_INT32_T prec_bytesToC_INT32_T
prec_bytesToC_INT32_T = transfer(bytes,prec_bytesToC_INT32_T,size(prec_bytesToC_INT32_T)) prec_bytesToC_INT32_T = transfer(bytes,prec_bytesToC_INT32_T,size(prec_bytesToC_INT32_T))
end function prec_bytesToC_INT32_T end function prec_bytesToC_INT32_T
@ -280,6 +280,7 @@ pure function prec_bytesToC_INT64_T(bytes)
integer(C_INT64_T), dimension(size(bytes,kind=pI64)/(storage_size(0_C_INT64_T,pI64)/8_pI64)) :: & integer(C_INT64_T), dimension(size(bytes,kind=pI64)/(storage_size(0_C_INT64_T,pI64)/8_pI64)) :: &
prec_bytesToC_INT64_T prec_bytesToC_INT64_T
prec_bytesToC_INT64_T = transfer(bytes,prec_bytesToC_INT64_T,size(prec_bytesToC_INT64_T)) prec_bytesToC_INT64_T = transfer(bytes,prec_bytesToC_INT64_T,size(prec_bytesToC_INT64_T))
end function prec_bytesToC_INT64_T end function prec_bytesToC_INT64_T
@ -295,6 +296,7 @@ subroutine selfTest
integer(pInt), dimension(1) :: i integer(pInt), dimension(1) :: i
real(pReal), dimension(2) :: r real(pReal), dimension(2) :: r
realloc_lhs_test = [1,2] realloc_lhs_test = [1,2]
if (any(realloc_lhs_test/=[1,2])) error stop 'LHS allocation' if (any(realloc_lhs_test/=[1,2])) error stop 'LHS allocation'

View File

@ -1,534 +0,0 @@
!---------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Michigan State University
!> @brief general quaternion math, not limited to unit quaternions
!> @details w is the real part, (x, y, z) are the imaginary parts.
!> @details https://en.wikipedia.org/wiki/Quaternion
!---------------------------------------------------------------------------------------------------
module quaternions
use prec
implicit none
private
real(pReal), parameter, public :: P = -1.0_pReal !< parameter for orientation conversion.
type, public :: quaternion
real(pReal), private :: w = 0.0_pReal
real(pReal), private :: x = 0.0_pReal
real(pReal), private :: y = 0.0_pReal
real(pReal), private :: z = 0.0_pReal
contains
procedure, private :: add__
procedure, private :: pos__
generic, public :: operator(+) => add__,pos__
procedure, private :: sub__
procedure, private :: neg__
generic, public :: operator(-) => sub__,neg__
procedure, private :: mul_quat__
procedure, private :: mul_scal__
generic, public :: operator(*) => mul_quat__, mul_scal__
procedure, private :: div_quat__
procedure, private :: div_scal__
generic, public :: operator(/) => div_quat__, div_scal__
procedure, private :: eq__
generic, public :: operator(==) => eq__
procedure, private :: neq__
generic, public :: operator(/=) => neq__
procedure, private :: pow_quat__
procedure, private :: pow_scal__
generic, public :: operator(**) => pow_quat__, pow_scal__
procedure, public :: abs => abs__
procedure, public :: conjg => conjg__
procedure, public :: real => real__
procedure, public :: aimag => aimag__
procedure, public :: homomorphed
procedure, public :: asArray
procedure, public :: inverse
end type
interface assignment (=)
module procedure assign_quat__
module procedure assign_vec__
end interface assignment (=)
interface quaternion
module procedure init__
end interface quaternion
interface abs
procedure abs__
end interface abs
interface dot_product
procedure dot_product__
end interface dot_product
interface conjg
module procedure conjg__
end interface conjg
interface exp
module procedure exp__
end interface exp
interface log
module procedure log__
end interface log
interface real
module procedure real__
end interface real
interface aimag
module procedure aimag__
end interface aimag
public :: &
quaternions_init, &
assignment(=), &
conjg, aimag, &
log, exp, &
abs, dot_product, &
inverse, &
real
contains
!--------------------------------------------------------------------------------------------------
!> @brief Do self test.
!--------------------------------------------------------------------------------------------------
subroutine quaternions_init
print'(/,a)', ' <<<+- quaternions init -+>>>'; flush(6)
call selfTest
end subroutine quaternions_init
!---------------------------------------------------------------------------------------------------
!> @brief construct a quaternion from a 4-vector
!---------------------------------------------------------------------------------------------------
type(quaternion) pure function init__(array)
real(pReal), intent(in), dimension(4) :: array
init__%w = array(1)
init__%x = array(2)
init__%y = array(3)
init__%z = array(4)
end function init__
!---------------------------------------------------------------------------------------------------
!> @brief assign a quaternion
!---------------------------------------------------------------------------------------------------
elemental pure subroutine assign_quat__(self,other)
type(quaternion), intent(out) :: self
type(quaternion), intent(in) :: other
self = [other%w,other%x,other%y,other%z]
end subroutine assign_quat__
!---------------------------------------------------------------------------------------------------
!> @brief assign a 4-vector
!---------------------------------------------------------------------------------------------------
pure subroutine assign_vec__(self,other)
type(quaternion), intent(out) :: self
real(pReal), intent(in), dimension(4) :: other
self%w = other(1)
self%x = other(2)
self%y = other(3)
self%z = other(4)
end subroutine assign_vec__
!---------------------------------------------------------------------------------------------------
!> @brief add a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function add__(self,other)
class(quaternion), intent(in) :: self,other
add__ = [ self%w, self%x, self%y ,self%z] &
+ [other%w, other%x, other%y,other%z]
end function add__
!---------------------------------------------------------------------------------------------------
!> @brief return (unary positive operator)
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pos__(self)
class(quaternion), intent(in) :: self
pos__ = self * (+1.0_pReal)
end function pos__
!---------------------------------------------------------------------------------------------------
!> @brief subtract a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function sub__(self,other)
class(quaternion), intent(in) :: self,other
sub__ = [ self%w, self%x, self%y ,self%z] &
- [other%w, other%x, other%y,other%z]
end function sub__
!---------------------------------------------------------------------------------------------------
!> @brief negate (unary negative operator)
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function neg__(self)
class(quaternion), intent(in) :: self
neg__ = self * (-1.0_pReal)
end function neg__
!---------------------------------------------------------------------------------------------------
!> @brief multiply with a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function mul_quat__(self,other)
class(quaternion), intent(in) :: self, other
mul_quat__%w = self%w*other%w - self%x*other%x - self%y*other%y - self%z*other%z
mul_quat__%x = self%w*other%x + self%x*other%w + P * (self%y*other%z - self%z*other%y)
mul_quat__%y = self%w*other%y + self%y*other%w + P * (self%z*other%x - self%x*other%z)
mul_quat__%z = self%w*other%z + self%z*other%w + P * (self%x*other%y - self%y*other%x)
end function mul_quat__
!---------------------------------------------------------------------------------------------------
!> @brief multiply with a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function mul_scal__(self,scal)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: scal
mul_scal__ = [self%w,self%x,self%y,self%z]*scal
end function mul_scal__
!---------------------------------------------------------------------------------------------------
!> @brief divide by a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function div_quat__(self,other)
class(quaternion), intent(in) :: self, other
div_quat__ = self * (conjg(other)/(abs(other)**2.0_pReal))
end function div_quat__
!---------------------------------------------------------------------------------------------------
!> @brief divide by a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function div_scal__(self,scal)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: scal
div_scal__ = [self%w,self%x,self%y,self%z]/scal
end function div_scal__
!---------------------------------------------------------------------------------------------------
!> @brief test equality
!---------------------------------------------------------------------------------------------------
logical elemental pure function eq__(self,other)
class(quaternion), intent(in) :: self,other
eq__ = all(dEq([ self%w, self%x, self%y, self%z], &
[other%w,other%x,other%y,other%z]))
end function eq__
!---------------------------------------------------------------------------------------------------
!> @brief test inequality
!---------------------------------------------------------------------------------------------------
logical elemental pure function neq__(self,other)
class(quaternion), intent(in) :: self,other
neq__ = .not. self%eq__(other)
end function neq__
!---------------------------------------------------------------------------------------------------
!> @brief raise to the power of a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pow_quat__(self,expon)
class(quaternion), intent(in) :: self
type(quaternion), intent(in) :: expon
pow_quat__ = exp(log(self)*expon)
end function pow_quat__
!---------------------------------------------------------------------------------------------------
!> @brief raise to the power of a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pow_scal__(self,expon)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: expon
pow_scal__ = exp(log(self)*expon)
end function pow_scal__
!---------------------------------------------------------------------------------------------------
!> @brief take exponential
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function exp__(a)
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(a))
exp__ = merge(exp(a%w) * [ cos(absImag), &
a%x/absImag * sin(absImag), &
a%y/absImag * sin(absImag), &
a%z/absImag * sin(absImag)], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
end function exp__
!---------------------------------------------------------------------------------------------------
!> @brief take logarithm
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function log__(a)
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(a))
log__ = merge([log(abs(a)), &
a%x/absImag * acos(a%w/abs(a)), &
a%y/absImag * acos(a%w/abs(a)), &
a%z/absImag * acos(a%w/abs(a))], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
end function log__
!---------------------------------------------------------------------------------------------------
!> @brief return norm
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function abs__(self)
class(quaternion), intent(in) :: self
abs__ = norm2([self%w,self%x,self%y,self%z])
end function abs__
!---------------------------------------------------------------------------------------------------
!> @brief calculate dot product
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function dot_product__(a,b)
class(quaternion), intent(in) :: a,b
dot_product__ = a%w*b%w + a%x*b%x + a%y*b%y + a%z*b%z
end function dot_product__
!---------------------------------------------------------------------------------------------------
!> @brief take conjugate complex
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function conjg__(self)
class(quaternion), intent(in) :: self
conjg__ = [self%w,-self%x,-self%y,-self%z]
end function conjg__
!---------------------------------------------------------------------------------------------------
!> @brief homomorph
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function homomorphed(self)
class(quaternion), intent(in) :: self
homomorphed = - self
end function homomorphed
!---------------------------------------------------------------------------------------------------
!> @brief return as plain array
!---------------------------------------------------------------------------------------------------
pure function asArray(self)
real(pReal), dimension(4) :: asArray
class(quaternion), intent(in) :: self
asArray = [self%w,self%x,self%y,self%z]
end function asArray
!---------------------------------------------------------------------------------------------------
!> @brief real part (scalar)
!---------------------------------------------------------------------------------------------------
pure function real__(self)
real(pReal) :: real__
class(quaternion), intent(in) :: self
real__ = self%w
end function real__
!---------------------------------------------------------------------------------------------------
!> @brief imaginary part (3-vector)
!---------------------------------------------------------------------------------------------------
pure function aimag__(self)
real(pReal), dimension(3) :: aimag__
class(quaternion), intent(in) :: self
aimag__ = [self%x,self%y,self%z]
end function aimag__
!---------------------------------------------------------------------------------------------------
!> @brief inverse
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function inverse(self)
class(quaternion), intent(in) :: self
inverse = conjg(self)/abs(self)**2.0_pReal
end function inverse
!--------------------------------------------------------------------------------------------------
!> @brief check correctness of some quaternions functions
!--------------------------------------------------------------------------------------------------
subroutine selfTest
real(pReal), dimension(4) :: qu
type(quaternion) :: q, q_2
if(dNeq(abs(P),1.0_pReal)) error stop 'P not in {-1,+1}'
call random_number(qu)
qu = (qu-0.5_pReal) * 2.0_pReal
q = quaternion(qu)
q_2= qu
if(any(dNeq(q%asArray(),q_2%asArray()))) error stop 'assign_vec__'
q_2 = q + q
if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'add__'
q_2 = q - q
if(any(dNeq0(q_2%asArray()))) error stop 'sub__'
q_2 = q * 5.0_pReal
if(any(dNeq(q_2%asArray(),5.0_pReal*qu))) error stop 'mul__'
q_2 = q / 0.5_pReal
if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'div__'
q_2 = q * 0.3_pReal
if(dNeq0(abs(q)) .and. q_2 == q) error stop 'eq__'
q_2 = q
if(q_2 /= q) error stop 'neq__'
if(dNeq(abs(q),norm2(qu))) error stop 'abs__'
if(dNeq(abs(q)**2.0_pReal, real(q*q%conjg()),1.0e-14_pReal)) &
error stop 'abs__/*conjg'
if(any(dNeq(q%asArray(),qu))) error stop 'eq__'
if(dNeq(q%real(), qu(1))) error stop 'real()'
if(any(dNeq(q%aimag(), qu(2:4)))) error stop 'aimag()'
q_2 = q%homomorphed()
if(q /= q_2* (-1.0_pReal)) error stop 'homomorphed'
if(dNeq(q_2%real(), qu(1)* (-1.0_pReal))) error stop 'homomorphed/real'
if(any(dNeq(q_2%aimag(),qu(2:4)*(-1.0_pReal)))) error stop 'homomorphed/aimag'
q_2 = conjg(q)
if(dNeq(abs(q),abs(q_2))) error stop 'conjg/abs'
if(q /= conjg(q_2)) error stop 'conjg/involution'
if(dNeq(q_2%real(), q%real())) error stop 'conjg/real'
if(any(dNeq(q_2%aimag(),q%aimag()*(-1.0_pReal)))) error stop 'conjg/aimag'
if(abs(q) > 0.0_pReal) then
q_2 = q * q%inverse()
if( dNeq(real(q_2), 1.0_pReal,1.0e-15_pReal)) error stop 'inverse/real'
if(any(dNeq0(aimag(q_2), 1.0e-15_pReal))) error stop 'inverse/aimag'
q_2 = q/abs(q)
q_2 = conjg(q_2) - inverse(q_2)
if(any(dNeq0(q_2%asArray(),1.0e-15_pReal))) error stop 'inverse/conjg'
endif
if(dNeq(dot_product(qu,qu),dot_product(q,q))) error stop 'dot_product'
#if !(defined(__GFORTRAN__) && __GNUC__ < 9)
if (norm2(aimag(q)) > 0.0_pReal) then
if (dNeq0(abs(q-exp(log(q))),1.0e-13_pReal)) error stop 'exp/log'
if (dNeq0(abs(q-log(exp(q))),1.0e-13_pReal)) error stop 'log/exp'
endif
#endif
end subroutine selfTest
end module quaternions

View File

@ -111,8 +111,6 @@ subroutine results_addIncrement(inc,time)
call results_closeGroup(results_addGroup(trim('inc'//trim(adjustl(incChar))))) call results_closeGroup(results_addGroup(trim('inc'//trim(adjustl(incChar)))))
call results_setLink(trim('inc'//trim(adjustl(incChar))),'current') call results_setLink(trim('inc'//trim(adjustl(incChar))),'current')
call results_addAttribute('time/s',time,trim('inc'//trim(adjustl(incChar)))) call results_addAttribute('time/s',time,trim('inc'//trim(adjustl(incChar))))
call results_closeGroup(results_addGroup('current/phase'))
call results_closeGroup(results_addGroup('current/homogenization'))
end subroutine results_addIncrement end subroutine results_addIncrement

View File

@ -47,16 +47,16 @@
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
module rotations module rotations
use prec
use IO use IO
use math use math
use quaternions
implicit none implicit none
private private
real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion.
type, public :: rotation type, public :: rotation
type(quaternion) :: q real(pReal), dimension(4) :: q
contains contains
procedure, public :: asQuaternion procedure, public :: asQuaternion
procedure, public :: asEulers procedure, public :: asEulers
@ -103,7 +103,6 @@ contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine rotations_init subroutine rotations_init
call quaternions_init
print'(/,a)', ' <<<+- rotations init -+>>>'; flush(IO_STDOUT) print'(/,a)', ' <<<+- rotations init -+>>>'; flush(IO_STDOUT)
print*, 'Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015' print*, 'Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015'
@ -122,7 +121,7 @@ pure function asQuaternion(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asQuaternion real(pReal), dimension(4) :: asQuaternion
asQuaternion = self%q%asArray() asQuaternion = self%q
end function asQuaternion end function asQuaternion
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
@ -131,7 +130,7 @@ pure function asEulers(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(3) :: asEulers real(pReal), dimension(3) :: asEulers
asEulers = qu2eu(self%q%asArray()) asEulers = qu2eu(self%q)
end function asEulers end function asEulers
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
@ -140,7 +139,7 @@ pure function asAxisAngle(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asAxisAngle real(pReal), dimension(4) :: asAxisAngle
asAxisAngle = qu2ax(self%q%asArray()) asAxisAngle = qu2ax(self%q)
end function asAxisAngle end function asAxisAngle
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
@ -149,7 +148,7 @@ pure function asMatrix(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(3,3) :: asMatrix real(pReal), dimension(3,3) :: asMatrix
asMatrix = qu2om(self%q%asArray()) asMatrix = qu2om(self%q)
end function asMatrix end function asMatrix
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
@ -158,7 +157,7 @@ pure function asRodrigues(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asRodrigues real(pReal), dimension(4) :: asRodrigues
asRodrigues = qu2ro(self%q%asArray()) asRodrigues = qu2ro(self%q)
end function asRodrigues end function asRodrigues
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
@ -167,7 +166,7 @@ pure function asHomochoric(self)
class(rotation), intent(in) :: self class(rotation), intent(in) :: self
real(pReal), dimension(3) :: asHomochoric real(pReal), dimension(3) :: asHomochoric
asHomochoric = qu2ho(self%q%asArray()) asHomochoric = qu2ho(self%q)
end function asHomochoric end function asHomochoric
@ -259,7 +258,7 @@ pure elemental function rotRot__(self,R) result(rRot)
type(rotation) :: rRot type(rotation) :: rRot
class(rotation), intent(in) :: self,R class(rotation), intent(in) :: self,R
rRot = rotation(self%q*R%q) rRot = rotation(multiply_quaternion(self%q,R%q))
call rRot%standardize() call rRot%standardize()
end function rotRot__ end function rotRot__
@ -272,14 +271,14 @@ pure elemental subroutine standardize(self)
class(rotation), intent(inout) :: self class(rotation), intent(inout) :: self
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed() if (self%q(1) < 0.0_pReal) self%q = - self%q
end subroutine standardize end subroutine standardize
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University !> @author Marc De Graef, Carnegie Mellon University
!> @brief rotate a vector passively (default) or actively !> @brief Rotate a vector passively (default) or actively.
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
pure function rotVector(self,v,active) result(vRot) pure function rotVector(self,v,active) result(vRot)
@ -288,9 +287,8 @@ pure function rotVector(self,v,active) result(vRot)
real(pReal), intent(in), dimension(3) :: v real(pReal), intent(in), dimension(3) :: v
logical, intent(in), optional :: active logical, intent(in), optional :: active
real(pReal), dimension(3) :: v_normed real(pReal), dimension(4) :: v_normed, q
type(quaternion) :: q logical :: passive
logical :: passive
if (present(active)) then if (present(active)) then
passive = .not. active passive = .not. active
@ -301,13 +299,13 @@ pure function rotVector(self,v,active) result(vRot)
if (dEq0(norm2(v))) then if (dEq0(norm2(v))) then
vRot = v vRot = v
else else
v_normed = v/norm2(v) v_normed = [0.0_pReal,v]/norm2(v)
if (passive) then if (passive) then
q = self%q * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * conjg(self%q) ) q = multiply_quaternion(self%q, multiply_quaternion(v_normed, conjugate_quaternion(self%q)))
else else
q = conjg(self%q) * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * self%q ) q = multiply_quaternion(conjugate_quaternion(self%q), multiply_quaternion(v_normed, self%q))
endif endif
vRot = q%aimag()*norm2(v) vRot = q(2:4)*norm2(v)
endif endif
end function rotVector end function rotVector
@ -315,8 +313,8 @@ end function rotVector
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University !> @author Marc De Graef, Carnegie Mellon University
!> @brief rotate a rank-2 tensor passively (default) or actively !> @brief Rotate a rank-2 tensor passively (default) or actively.
!> @details: rotation is based on rotation matrix !> @details: Rotation is based on rotation matrix
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
pure function rotTensor2(self,T,active) result(tRot) pure function rotTensor2(self,T,active) result(tRot)
@ -403,7 +401,7 @@ pure elemental function misorientation(self,other)
type(rotation) :: misorientation type(rotation) :: misorientation
class(rotation), intent(in) :: self, other class(rotation), intent(in) :: self, other
misorientation%q = other%q * conjg(self%q) misorientation%q = multiply_quaternion(other%q, conjugate_quaternion(self%q))
end function misorientation end function misorientation
@ -1338,7 +1336,7 @@ end function cu2ho
!-------------------------------------------------------------------------- !--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University !> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief determine to which pyramid a point in a cubic grid belongs !> @brief Determine to which pyramid a point in a cubic grid belongs.
!-------------------------------------------------------------------------- !--------------------------------------------------------------------------
pure function GetPyramidOrder(xyz) pure function GetPyramidOrder(xyz)
@ -1362,7 +1360,39 @@ end function GetPyramidOrder
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief check correctness of some rotations functions !> @brief Multiply two quaternions.
!--------------------------------------------------------------------------------------------------
pure function multiply_quaternion(qu1,qu2)
real(pReal), dimension(4), intent(in) :: qu1, qu2
real(pReal), dimension(4) :: multiply_quaternion
multiply_quaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4)
multiply_quaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3))
multiply_quaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4))
multiply_quaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2))
end function multiply_quaternion
!--------------------------------------------------------------------------------------------------
!> @brief Calculate conjugate complex of a quaternion.
!--------------------------------------------------------------------------------------------------
pure function conjugate_quaternion(qu)
real(pReal), dimension(4), intent(in) :: qu
real(pReal), dimension(4) :: conjugate_quaternion
conjugate_quaternion = [qu(1), -qu(2), -qu(3), -qu(4)]
end function conjugate_quaternion
!--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some rotations functions.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine selfTest subroutine selfTest
@ -1374,7 +1404,8 @@ subroutine selfTest
real :: A,B real :: A,B
integer :: i integer :: i
do i=1,10
do i = 1, 10
#if defined(__GFORTRAN__) && __GNUC__<9 #if defined(__GFORTRAN__) && __GNUC__<9
if(i<7) cycle if(i<7) cycle

View File

@ -120,10 +120,10 @@ end function source_damage_anisoBrittle_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief calculates derived quantities from state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine source_damage_anisoBrittle_dotState(S, ipc, ip, el) module subroutine source_damage_anisoBrittle_dotState(S, co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
real(pReal), intent(in), dimension(3,3) :: & real(pReal), intent(in), dimension(3,3) :: &
@ -139,8 +139,8 @@ module subroutine source_damage_anisoBrittle_dotState(S, ipc, ip, el)
real(pReal) :: & real(pReal) :: &
traction_d, traction_t, traction_n, traction_crit traction_d, traction_t, traction_n, traction_crit
phase = material_phaseAt(ipc,el) phase = material_phaseAt(co,el)
constituent = material_phasememberAt(ipc,ip,el) constituent = material_phasememberAt(co,ip,el)
sourceOffset = source_damage_anisoBrittle_offset(phase) sourceOffset = source_damage_anisoBrittle_offset(phase)
homog = material_homogenizationAt(el) homog = material_homogenizationAt(el)
damageOffset = material_homogenizationMemberAt(ip,el) damageOffset = material_homogenizationMemberAt(ip,el)

View File

@ -107,10 +107,10 @@ end function source_damage_anisoDuctile_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief calculates derived quantities from state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine source_damage_anisoDuctile_dotState(ipc, ip, el) module subroutine source_damage_anisoDuctile_dotState(co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
@ -121,8 +121,8 @@ module subroutine source_damage_anisoDuctile_dotState(ipc, ip, el)
damageOffset, & damageOffset, &
homog homog
phase = material_phaseAt(ipc,el) phase = material_phaseAt(co,el)
constituent = material_phasememberAt(ipc,ip,el) constituent = material_phasememberAt(co,ip,el)
sourceOffset = source_damage_anisoDuctile_offset(phase) sourceOffset = source_damage_anisoDuctile_offset(phase)
homog = material_homogenizationAt(el) homog = material_homogenizationAt(el)
damageOffset = material_homogenizationMemberAt(ip,el) damageOffset = material_homogenizationMemberAt(ip,el)

View File

@ -94,10 +94,10 @@ end function source_damage_isoBrittle_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief calculates derived quantities from state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine source_damage_isoBrittle_deltaState(C, Fe, ipc, ip, el) module subroutine source_damage_isoBrittle_deltaState(C, Fe, co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
real(pReal), intent(in), dimension(3,3) :: & real(pReal), intent(in), dimension(3,3) :: &
@ -114,8 +114,8 @@ module subroutine source_damage_isoBrittle_deltaState(C, Fe, ipc, ip, el)
real(pReal) :: & real(pReal) :: &
strainenergy strainenergy
phase = material_phaseAt(ipc,el) !< phase ID at ipc,ip,el phase = material_phaseAt(co,el) !< phase ID at co,ip,el
constituent = material_phasememberAt(ipc,ip,el) !< state array offset for phase ID at ipc,ip,el constituent = material_phasememberAt(co,ip,el) !< state array offset for phase ID at co,ip,el
sourceOffset = source_damage_isoBrittle_offset(phase) sourceOffset = source_damage_isoBrittle_offset(phase)
strain = 0.5_pReal*math_sym33to6(matmul(transpose(Fe),Fe)-math_I3) strain = 0.5_pReal*math_sym33to6(matmul(transpose(Fe),Fe)-math_I3)

View File

@ -98,10 +98,10 @@ end function source_damage_isoDuctile_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief calculates derived quantities from state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine source_damage_isoDuctile_dotState(ipc, ip, el) module subroutine source_damage_isoDuctile_dotState(co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
ipc, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
@ -112,8 +112,8 @@ module subroutine source_damage_isoDuctile_dotState(ipc, ip, el)
damageOffset, & damageOffset, &
homog homog
phase = material_phaseAt(ipc,el) phase = material_phaseAt(co,el)
constituent = material_phasememberAt(ipc,ip,el) constituent = material_phasememberAt(co,ip,el)
sourceOffset = source_damage_isoDuctile_offset(phase) sourceOffset = source_damage_isoDuctile_offset(phase)
homog = material_homogenizationAt(el) homog = material_homogenizationAt(el)
damageOffset = material_homogenizationMemberAt(ip,el) damageOffset = material_homogenizationMemberAt(ip,el)