example files for spectral method
This commit is contained in:
parent
453c6031a7
commit
bc6e85d43e
|
@ -0,0 +1,25 @@
|
|||
4 header
|
||||
resolution a 16 b 16 c 16
|
||||
grains 20
|
||||
random seed 0
|
||||
x y z phi1 Phi phi2
|
||||
0.375488 0.161813 0.891040 197.572861 16.816409 129.422844
|
||||
0.187988 0.849313 0.953540 257.468172 53.250534 157.331503
|
||||
0.750488 0.349313 0.953540 216.994815 94.418518 251.147231
|
||||
0.312988 0.099313 0.891040 196.157946 55.870978 21.681170
|
||||
0.562988 0.536813 0.703540 152.515728 139.769395 240.036018
|
||||
0.750488 0.036813 0.641040 232.521881 73.749222 241.429633
|
||||
0.812988 0.724313 0.016040 157.531396 135.503513 75.737722
|
||||
0.187988 0.161813 0.266040 321.038280 27.209843 46.413467
|
||||
0.562988 0.286813 0.203540 346.918594 87.495569 113.554206
|
||||
0.937988 0.599313 0.953540 138.038947 99.827132 130.935878
|
||||
0.937988 0.349313 0.578540 285.021014 118.092004 205.270837
|
||||
0.812988 0.661813 0.453540 190.402171 56.738068 157.896545
|
||||
0.125488 0.411813 0.203540 204.496042 95.031265 355.814582
|
||||
0.625488 0.224313 0.578540 333.214790 82.133355 36.736132
|
||||
0.687988 0.161813 0.891040 25.572981 164.242648 75.195632
|
||||
0.625488 0.161813 0.766040 31.366548 76.392403 58.071426
|
||||
0.437988 0.724313 0.266040 7.278623 77.044663 235.118997
|
||||
0.437988 0.099313 0.641040 299.743144 76.475096 91.184977
|
||||
0.937988 0.911813 0.828540 280.136430 27.439718 167.871878
|
||||
0.437988 0.411813 0.516040 313.204373 68.676053 87.993213
|
|
@ -0,0 +1,260 @@
|
|||
3 header
|
||||
resolution a 16 b 16 c 16
|
||||
dimension x 1.0 y 1.0 z 1.0
|
||||
homogenization 1
|
||||
01 01 01 04 04 04 04 04 15 15 15 15 15 01 01 01
|
||||
01 01 01 04 04 04 04 04 15 15 15 15 15 01 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 15 01 01
|
||||
01 01 04 04 04 04 04 09 09 15 15 15 03 03 03 01
|
||||
13 13 13 13 04 04 09 09 09 09 03 03 03 03 03 03
|
||||
13 13 13 13 13 04 09 09 09 03 03 03 03 03 03 03
|
||||
13 13 13 13 13 13 09 09 09 03 03 03 03 03 03 10
|
||||
10 13 13 13 13 13 09 09 09 03 03 03 03 03 10 10
|
||||
10 10 13 13 13 13 17 17 03 03 03 03 10 10 10 10
|
||||
10 10 10 13 02 17 17 17 17 07 07 07 07 10 10 10
|
||||
10 10 02 02 02 02 17 17 17 07 07 07 07 07 10 10
|
||||
10 02 02 02 02 02 17 17 17 07 07 07 07 07 07 10
|
||||
02 02 02 02 02 02 02 17 17 07 07 07 07 07 07 07
|
||||
01 02 02 02 02 02 02 17 17 07 07 07 07 07 07 01
|
||||
01 02 02 02 02 02 02 04 17 07 07 07 07 01 01 01
|
||||
01 01 02 02 02 04 04 04 15 15 15 15 01 01 01 01
|
||||
01 01 01 08 04 04 04 04 09 15 15 15 01 01 01 01
|
||||
01 01 08 08 04 04 04 09 09 09 15 15 15 01 01 01
|
||||
01 08 08 08 08 04 04 09 09 09 09 15 15 01 01 01
|
||||
08 08 08 08 08 04 09 09 09 09 09 03 03 03 03 01
|
||||
13 13 13 13 08 09 09 09 09 09 09 03 03 03 03 13
|
||||
13 13 13 13 13 09 09 09 09 09 09 03 03 03 03 13
|
||||
13 13 13 13 13 13 09 09 09 09 03 03 03 03 03 13
|
||||
13 13 13 13 13 13 09 09 09 09 03 03 03 03 10 10
|
||||
10 13 13 13 13 13 17 17 09 09 03 07 07 10 10 10
|
||||
10 10 13 13 13 17 17 17 17 17 07 07 07 07 10 10
|
||||
10 10 02 02 17 17 17 17 17 17 07 07 07 07 07 10
|
||||
10 02 02 02 02 17 17 17 17 17 07 07 07 07 07 07
|
||||
02 02 02 02 02 17 17 17 17 17 07 07 07 07 07 07
|
||||
01 02 02 02 02 02 17 17 17 17 07 07 07 07 07 01
|
||||
01 01 02 02 02 02 17 17 17 17 07 07 07 07 01 01
|
||||
01 01 01 02 02 02 04 04 17 15 15 07 01 01 01 01
|
||||
01 01 08 08 08 08 08 09 09 09 09 15 01 01 01 01
|
||||
01 08 08 08 08 08 09 09 09 09 09 09 01 01 01 01
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 01 01 01
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 03 01 08
|
||||
13 13 13 08 08 09 09 09 09 09 09 09 03 03 13 13
|
||||
13 13 13 13 13 09 09 09 09 09 09 09 03 03 13 13
|
||||
13 13 13 13 13 13 09 09 09 09 09 09 03 03 13 13
|
||||
13 13 13 13 13 13 09 09 09 09 09 03 03 03 13 13
|
||||
13 13 13 13 13 17 17 17 17 09 09 07 07 10 10 13
|
||||
13 13 13 13 17 17 17 17 17 17 07 07 07 07 10 10
|
||||
10 13 13 17 17 17 17 17 17 17 07 07 07 07 07 10
|
||||
10 02 02 02 17 17 17 17 17 17 07 07 07 07 07 07
|
||||
02 02 02 02 17 17 17 17 17 17 07 07 07 07 07 07
|
||||
01 02 02 02 02 17 17 17 17 17 07 07 07 07 07 01
|
||||
01 01 02 02 02 17 17 17 17 17 07 07 07 07 01 01
|
||||
01 01 01 08 08 08 17 17 17 17 07 07 01 01 01 01
|
||||
08 08 08 08 08 08 08 09 09 09 09 09 01 01 01 01
|
||||
08 08 08 08 08 08 08 09 09 09 09 09 09 01 01 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 09 01 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 09 08 08
|
||||
13 13 08 08 08 08 09 09 09 09 09 09 09 09 13 13
|
||||
13 13 13 13 13 09 09 09 09 09 09 09 09 03 13 13
|
||||
13 13 13 13 13 13 09 09 09 09 09 09 09 13 13 13
|
||||
13 13 13 13 13 13 09 09 09 09 09 09 09 13 13 13
|
||||
13 13 13 13 13 17 17 17 17 09 09 12 12 12 13 13
|
||||
13 13 13 13 17 17 17 17 17 17 17 07 07 07 07 13
|
||||
13 13 13 17 17 17 17 17 17 17 17 07 07 07 07 07
|
||||
07 13 17 17 17 17 17 17 17 17 17 07 07 07 07 07
|
||||
07 02 02 17 17 17 17 17 17 17 17 07 07 07 07 07
|
||||
01 02 02 17 17 17 17 17 17 17 17 07 07 07 07 01
|
||||
01 01 08 08 17 17 17 17 17 17 17 07 07 07 01 01
|
||||
01 08 08 08 08 08 17 17 17 17 17 07 01 01 01 01
|
||||
08 08 08 08 08 08 08 09 09 09 09 09 09 01 01 08
|
||||
08 08 08 08 08 08 08 09 09 09 09 09 09 01 08 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 09 08 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 09 08 08
|
||||
13 08 08 08 08 08 09 09 09 09 09 09 09 09 13 13
|
||||
13 13 13 13 13 09 09 09 09 09 09 09 09 09 13 13
|
||||
13 13 13 13 13 13 09 09 09 09 09 09 09 13 13 13
|
||||
13 13 13 13 13 13 20 09 09 09 09 09 12 12 13 13
|
||||
13 13 13 13 13 17 17 17 17 17 12 12 12 12 12 13
|
||||
13 13 13 13 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
13 13 13 17 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
12 13 17 17 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
12 02 17 17 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
01 08 17 17 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
01 08 08 08 17 17 17 17 17 17 17 12 12 12 01 01
|
||||
08 08 08 08 08 08 17 17 17 17 17 09 12 01 01 01
|
||||
08 08 08 08 08 08 08 09 09 09 14 06 06 06 08 08
|
||||
08 08 08 08 08 08 08 09 09 09 09 14 06 06 08 08
|
||||
08 08 08 08 08 08 08 09 09 09 09 09 14 11 08 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 11 11 08
|
||||
08 08 08 08 08 08 09 09 09 09 09 09 09 11 11 11
|
||||
13 13 13 13 08 20 20 09 09 09 09 09 09 11 11 13
|
||||
13 13 13 13 13 20 20 20 09 09 09 09 12 11 11 13
|
||||
13 13 13 13 13 20 20 20 20 09 09 12 12 12 12 13
|
||||
13 13 13 13 13 17 17 17 17 17 12 12 12 12 12 12
|
||||
13 13 13 13 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 13 13 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 08 17 17 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
08 08 08 08 17 17 17 17 17 17 17 12 12 12 12 12
|
||||
08 08 08 08 08 08 17 17 17 17 06 06 06 06 12 08
|
||||
08 08 08 08 08 08 18 18 18 14 06 06 06 06 06 08
|
||||
08 08 08 08 08 08 18 18 14 14 14 14 06 06 06 08
|
||||
08 08 08 08 08 08 18 14 14 14 14 14 14 11 11 08
|
||||
08 08 08 08 08 08 20 20 14 14 14 14 14 11 11 11
|
||||
11 08 08 08 08 20 20 20 20 14 14 14 14 11 11 11
|
||||
11 13 13 08 20 20 20 20 20 20 14 14 11 11 11 11
|
||||
11 13 13 13 20 20 20 20 20 20 20 14 11 11 11 11
|
||||
11 13 13 13 20 20 20 20 20 20 20 12 12 12 11 11
|
||||
13 13 13 13 20 20 20 20 20 20 12 12 12 12 12 12
|
||||
12 13 13 13 17 17 17 17 17 12 12 12 12 12 12 12
|
||||
12 12 13 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
08 08 08 08 17 17 17 17 17 17 06 12 12 12 12 12
|
||||
08 08 08 08 08 18 18 18 18 06 06 06 06 06 06 08
|
||||
08 08 08 08 18 18 18 18 18 14 06 06 06 06 06 06
|
||||
08 08 08 08 18 18 18 18 14 14 14 06 06 06 06 11
|
||||
11 08 08 08 08 18 18 18 14 14 14 14 14 06 11 11
|
||||
11 08 08 08 08 20 20 14 14 14 14 14 14 11 11 11
|
||||
11 11 08 08 20 20 20 20 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 14 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 20 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 20 20 12 12 11 11 11
|
||||
11 11 13 20 20 20 20 20 20 20 12 12 12 12 12 12
|
||||
12 12 13 20 20 20 20 20 20 12 12 12 12 12 12 12
|
||||
12 12 12 17 17 17 17 17 17 12 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 12 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 12 12 12 12 12 12 12
|
||||
12 12 17 17 17 17 17 17 17 17 12 12 12 12 12 12
|
||||
12 08 08 08 18 18 18 18 18 06 06 06 06 06 12 12
|
||||
08 08 08 08 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
06 08 08 18 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
11 08 08 18 18 18 18 18 18 14 14 06 06 06 06 06
|
||||
11 11 08 18 18 18 18 18 14 14 14 14 06 06 11 11
|
||||
11 11 11 18 18 18 18 14 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 14 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 20 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 20 05 12 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 05 05 12 12 12 12 11
|
||||
12 11 11 20 20 20 20 20 05 05 12 12 12 12 12 12
|
||||
12 12 12 20 20 20 20 05 05 05 12 12 12 12 12 12
|
||||
12 12 12 17 17 17 17 17 05 12 12 12 12 12 12 12
|
||||
12 12 12 17 17 17 17 17 17 12 12 12 12 12 12 12
|
||||
12 19 19 18 18 18 18 18 18 06 06 12 12 12 12 12
|
||||
19 19 18 18 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
06 19 18 18 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
19 19 18 18 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
11 11 18 18 18 18 18 18 18 14 06 06 06 06 06 06
|
||||
11 11 18 18 18 18 18 18 14 14 14 14 06 06 11 11
|
||||
11 11 11 18 18 18 18 18 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 14 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 20 05 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 05 05 05 05 11 11 11 11
|
||||
11 11 11 20 20 20 20 05 05 05 05 05 12 12 11 11
|
||||
11 11 11 20 20 20 05 05 05 05 05 12 12 12 12 12
|
||||
12 12 12 20 20 05 05 05 05 05 05 12 12 12 12 12
|
||||
12 12 19 02 05 05 05 05 05 05 12 12 12 12 12 12
|
||||
19 19 19 02 18 18 05 05 05 05 12 12 12 12 12 12
|
||||
19 19 19 18 18 18 18 18 18 06 06 06 06 06 19 19
|
||||
19 19 19 18 18 18 18 18 18 06 06 06 06 06 06 19
|
||||
19 19 18 18 18 18 18 18 18 06 06 06 06 06 06 06
|
||||
19 19 18 18 18 18 18 18 18 06 06 06 06 06 06 19
|
||||
19 19 18 18 18 18 18 18 18 16 06 06 06 06 06 06
|
||||
11 11 18 18 18 18 18 18 18 14 14 06 06 06 06 11
|
||||
11 11 11 18 18 18 18 18 14 14 14 14 14 11 11 11
|
||||
11 11 11 18 18 18 18 14 14 14 14 14 14 11 11 11
|
||||
11 11 11 20 20 20 20 20 14 14 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 20 20 05 05 05 05 11 11 11 11
|
||||
11 11 11 20 20 20 20 05 05 05 05 05 11 11 11 11
|
||||
11 11 11 20 20 20 05 05 05 05 05 05 05 11 11 11
|
||||
11 11 11 20 20 05 05 05 05 05 05 05 12 12 12 11
|
||||
12 10 02 02 05 05 05 05 05 05 05 05 12 12 12 12
|
||||
19 19 02 02 02 05 05 05 05 05 05 12 12 12 12 19
|
||||
19 19 02 02 02 05 05 05 05 05 05 12 12 19 19 19
|
||||
19 19 19 02 18 18 18 18 18 06 06 06 06 19 19 19
|
||||
19 19 19 18 18 18 18 18 18 06 06 06 06 06 19 19
|
||||
19 19 19 18 18 18 18 18 18 06 06 06 06 06 06 19
|
||||
19 19 04 04 18 18 18 18 18 16 06 06 06 06 19 19
|
||||
19 19 04 04 18 18 18 18 18 16 16 06 06 06 06 19
|
||||
11 04 04 04 18 18 18 18 16 16 16 16 06 06 06 11
|
||||
11 11 04 04 18 18 18 18 16 16 16 16 16 11 11 11
|
||||
11 11 11 04 18 18 18 18 16 16 16 16 16 11 11 11
|
||||
11 11 11 20 20 20 20 05 05 14 14 14 11 11 11 11
|
||||
11 11 11 20 20 20 05 05 05 05 05 05 11 11 11 11
|
||||
11 11 11 20 20 05 05 05 05 05 05 05 05 11 11 11
|
||||
11 11 11 20 05 05 05 05 05 05 05 05 05 11 11 11
|
||||
10 10 10 02 05 05 05 05 05 05 05 05 05 10 10 10
|
||||
10 10 02 02 05 05 05 05 05 05 05 05 05 10 10 10
|
||||
19 19 02 02 02 05 05 05 05 05 05 05 19 19 19 19
|
||||
19 19 02 02 02 02 05 05 05 05 05 06 19 19 19 19
|
||||
19 19 02 02 02 02 18 18 18 06 06 06 19 19 19 19
|
||||
19 19 02 02 02 18 18 18 18 06 06 06 06 19 19 19
|
||||
19 19 19 04 18 18 18 18 18 06 06 06 06 06 19 19
|
||||
19 19 04 04 04 04 18 18 16 16 16 06 06 19 19 19
|
||||
19 19 04 04 04 04 18 18 16 16 16 16 06 06 19 19
|
||||
19 04 04 04 04 04 18 18 16 16 16 16 15 15 06 19
|
||||
11 04 04 04 04 04 18 16 16 16 16 16 15 15 11 11
|
||||
11 11 04 04 04 04 18 16 16 16 16 16 15 03 11 11
|
||||
11 11 11 04 04 04 05 05 16 16 16 03 03 03 11 11
|
||||
11 11 11 04 20 05 05 05 05 05 05 03 03 03 11 11
|
||||
10 10 10 20 05 05 05 05 05 05 05 05 03 03 10 10
|
||||
10 10 10 10 05 05 05 05 05 05 05 05 05 10 10 10
|
||||
10 10 10 02 05 05 05 05 05 05 05 05 10 10 10 10
|
||||
10 10 02 02 02 05 05 05 05 05 05 05 10 10 10 10
|
||||
19 02 02 02 02 02 05 05 05 05 05 05 07 19 19 19
|
||||
19 02 02 02 02 02 02 05 05 05 05 07 19 19 19 19
|
||||
19 19 02 02 02 02 02 18 18 06 06 19 19 19 19 19
|
||||
19 19 02 02 02 04 18 18 18 06 06 06 19 19 19 19
|
||||
19 19 02 04 04 04 18 18 18 16 06 06 06 19 19 19
|
||||
19 01 04 04 04 04 04 04 16 16 15 15 15 19 19 19
|
||||
01 01 04 04 04 04 04 04 16 16 15 15 15 15 19 01
|
||||
01 04 04 04 04 04 04 04 16 16 15 15 15 15 15 01
|
||||
01 04 04 04 04 04 04 16 16 16 15 15 15 15 15 01
|
||||
11 04 04 04 04 04 04 16 16 16 15 15 03 03 03 03
|
||||
11 11 04 04 04 04 04 16 16 03 03 03 03 03 03 03
|
||||
10 10 10 04 04 05 05 05 05 05 03 03 03 03 03 10
|
||||
10 10 10 10 05 05 05 05 05 05 05 03 03 03 10 10
|
||||
10 10 10 10 05 05 05 05 05 05 05 05 10 10 10 10
|
||||
10 10 10 02 02 05 05 05 05 05 05 05 10 10 10 10
|
||||
10 10 02 02 02 02 05 05 05 05 05 07 07 10 10 10
|
||||
10 02 02 02 02 02 02 05 05 05 07 07 07 07 10 10
|
||||
19 02 02 02 02 02 02 05 05 05 07 07 07 19 19 19
|
||||
19 02 02 02 02 02 02 02 05 07 07 07 19 19 19 19
|
||||
19 02 02 02 02 02 04 04 16 16 06 19 19 19 19 19
|
||||
19 19 02 02 04 04 04 04 16 16 15 15 19 19 19 19
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 19 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 15 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 15 01 01
|
||||
01 04 04 04 04 04 04 04 15 15 15 15 15 15 03 01
|
||||
03 04 04 04 04 04 04 04 15 15 15 03 03 03 03 03
|
||||
10 10 04 04 04 04 04 16 03 03 03 03 03 03 03 03
|
||||
10 10 10 13 04 04 05 05 03 03 03 03 03 03 03 10
|
||||
10 10 10 10 13 05 05 05 05 03 03 03 03 03 10 10
|
||||
10 10 10 10 02 05 05 05 05 05 03 03 10 10 10 10
|
||||
10 10 10 02 02 02 05 05 05 05 05 07 10 10 10 10
|
||||
10 10 02 02 02 02 05 05 05 05 07 07 07 10 10 10
|
||||
10 02 02 02 02 02 02 05 05 07 07 07 07 07 10 10
|
||||
02 02 02 02 02 02 02 02 07 07 07 07 07 07 07 19
|
||||
19 02 02 02 02 02 02 02 07 07 07 07 07 19 19 19
|
||||
19 02 02 02 02 02 04 04 04 15 15 07 19 19 19 19
|
||||
01 01 02 02 04 04 04 04 15 15 15 15 19 19 19 19
|
||||
01 01 01 04 04 04 04 04 15 15 15 15 15 01 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 01 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 15 01 01
|
||||
01 01 04 04 04 04 04 04 15 15 15 15 15 03 03 01
|
||||
13 13 04 04 04 04 04 04 15 15 03 03 03 03 03 03
|
||||
13 13 13 13 04 04 04 09 03 03 03 03 03 03 03 03
|
||||
10 13 13 13 13 04 09 09 03 03 03 03 03 03 03 10
|
||||
10 10 13 13 13 13 05 05 03 03 03 03 03 03 10 10
|
||||
10 10 10 13 13 13 05 05 05 03 03 03 10 10 10 10
|
||||
10 10 10 02 02 02 05 05 05 07 07 07 07 10 10 10
|
||||
10 10 02 02 02 02 02 05 05 07 07 07 07 07 10 10
|
||||
10 02 02 02 02 02 02 17 07 07 07 07 07 07 07 10
|
||||
02 02 02 02 02 02 02 02 07 07 07 07 07 07 07 07
|
||||
02 02 02 02 02 02 02 02 07 07 07 07 07 07 07 19
|
||||
01 02 02 02 02 02 02 04 04 15 07 07 07 19 01 01
|
||||
01 01 02 02 02 04 04 04 15 15 15 15 19 01 01 01
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,184 @@
|
|||
#-------------------#
|
||||
<homogenization>
|
||||
#-------------------#
|
||||
|
||||
[SX]
|
||||
type isostrain
|
||||
Ngrains 1
|
||||
|
||||
|
||||
#-------------------#
|
||||
<crystallite>
|
||||
#-------------------#
|
||||
[almostAll]
|
||||
(output) phase
|
||||
(output) texture
|
||||
(output) volume
|
||||
(output) orientation # quaternion
|
||||
(output) eulerangles # orientation as Bunge triple
|
||||
(output) grainrotation # deviation from initial orientation as axis (1-3) and angle in degree (4)
|
||||
(output) f # deformation gradient tensor; synonyms: "defgrad"
|
||||
(output) fe # elastic deformation gradient tensor
|
||||
(output) fp # plastic deformation gradient tensor
|
||||
(output) e # total strain as Green-Lagrange tensor
|
||||
(output) ee # elastic strain as Green-Lagrange tensor
|
||||
(output) p # first Piola-Kichhoff stress tensor; synonyms: "firstpiola", "1stpiola"
|
||||
(output) lp # plastic velocity gradient tensor
|
||||
|
||||
|
||||
#-------------------#
|
||||
<phase>
|
||||
#-------------------#
|
||||
[Aluminum_phenopowerlaw]
|
||||
elasticity hooke
|
||||
plasticity phenopowerlaw
|
||||
|
||||
(output) resistance_slip
|
||||
(output) shearrate_slip
|
||||
(output) resolvedstress_slip
|
||||
(output) totalshear
|
||||
(output) resistance_twin
|
||||
(output) shearrate_twin
|
||||
(output) resolvedstress_twin
|
||||
(output) totalvolfrac
|
||||
|
||||
lattice_structure fcc
|
||||
Nslip 12 0 0 0 # per family
|
||||
Ntwin 0 0 0 0 # per family
|
||||
|
||||
c11 106.75e9
|
||||
c12 60.41e9
|
||||
c44 28.34e9
|
||||
|
||||
gdot0_slip 0.001
|
||||
n_slip 20
|
||||
tau0_slip 31e6 # per family
|
||||
tausat_slip 63e6 # per family
|
||||
a_slip 2.25
|
||||
gdot0_twin 0.001
|
||||
n_twin 20
|
||||
tau0_twin 31e6 # per family
|
||||
s_pr 0 # push-up factor for slip saturation due to twinning
|
||||
twin_b 0
|
||||
twin_c 0
|
||||
twin_d 0
|
||||
twin_e 0
|
||||
h0_slipslip 75e6
|
||||
h0_sliptwin 0
|
||||
h0_twinslip 0
|
||||
h0_twintwin 0
|
||||
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
|
||||
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
||||
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
||||
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
||||
atol_resistance 1
|
||||
|
||||
|
||||
#-------------------#
|
||||
<microstructure>
|
||||
#-------------------#
|
||||
[Grain01]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 01 fraction 1.0
|
||||
[Grain02]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 02 fraction 1.0
|
||||
[Grain03]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 03 fraction 1.0
|
||||
[Grain04]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 04 fraction 1.0
|
||||
[Grain05]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 05 fraction 1.0
|
||||
[Grain06]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 06 fraction 1.0
|
||||
[Grain07]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 07 fraction 1.0
|
||||
[Grain08]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 08 fraction 1.0
|
||||
[Grain09]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 09 fraction 1.0
|
||||
[Grain10]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 10 fraction 1.0
|
||||
[Grain11]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 11 fraction 1.0
|
||||
[Grain12]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 12 fraction 1.0
|
||||
[Grain13]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 13 fraction 1.0
|
||||
[Grain14]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 14 fraction 1.0
|
||||
[Grain15]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 15 fraction 1.0
|
||||
[Grain16]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 16 fraction 1.0
|
||||
[Grain17]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 17 fraction 1.0
|
||||
[Grain18]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 18 fraction 1.0
|
||||
[Grain19]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 19 fraction 1.0
|
||||
[Grain20]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 20 fraction 1.0
|
||||
|
||||
|
||||
#-------------------#
|
||||
<texture>
|
||||
#-------------------#
|
||||
[Grain01]
|
||||
(gauss) phi1 0.0 Phi 0.0 phi2 0.0 scatter 0.0 fraction 1.0
|
||||
[Grain02]
|
||||
(gauss) phi1 257.468172 Phi 53.250534 phi2 157.331503 scatter 0.0 fraction 1.0
|
||||
[Grain03]
|
||||
(gauss) phi1 216.994815 Phi 94.418518 phi2 251.147231 scatter 0.0 fraction 1.0
|
||||
[Grain04]
|
||||
(gauss) phi1 196.157946 Phi 55.870978 phi2 21.68117 scatter 0.0 fraction 1.0
|
||||
[Grain05]
|
||||
(gauss) phi1 152.515728 Phi 139.769395 phi2 240.036018 scatter 0.0 fraction 1.0
|
||||
[Grain06]
|
||||
(gauss) phi1 232.521881 Phi 73.749222 phi2 241.429633 scatter 0.0 fraction 1.0
|
||||
[Grain07]
|
||||
(gauss) phi1 157.531396 Phi 135.503513 phi2 75.737722 scatter 0.0 fraction 1.0
|
||||
[Grain08]
|
||||
(gauss) phi1 321.03828 Phi 27.209843 phi2 46.413467 scatter 0.0 fraction 1.0
|
||||
[Grain09]
|
||||
(gauss) phi1 346.918594 Phi 87.495569 phi2 113.554206 scatter 0.0 fraction 1.0
|
||||
[Grain10]
|
||||
(gauss) phi1 138.038947 Phi 99.827132 phi2 130.935878 scatter 0.0 fraction 1.0
|
||||
[Grain11]
|
||||
(gauss) phi1 285.021014 Phi 118.092004 phi2 205.270837 scatter 0.0 fraction 1.0
|
||||
[Grain12]
|
||||
(gauss) phi1 190.402171 Phi 56.738068 phi2 157.896545 scatter 0.0 fraction 1.0
|
||||
[Grain13]
|
||||
(gauss) phi1 204.496042 Phi 95.031265 phi2 355.814582 scatter 0.0 fraction 1.0
|
||||
[Grain14]
|
||||
(gauss) phi1 333.21479 Phi 82.133355 phi2 36.736132 scatter 0.0 fraction 1.0
|
||||
[Grain15]
|
||||
(gauss) phi1 25.572981 Phi 164.242648 phi2 75.195632 scatter 0.0 fraction 1.0
|
||||
[Grain16]
|
||||
(gauss) phi1 31.366548 Phi 76.392403 phi2 58.071426 scatter 0.0 fraction 1.0
|
||||
[Grain17]
|
||||
(gauss) phi1 7.278623 Phi 77.044663 phi2 235.118997 scatter 0.0 fraction 1.0
|
||||
[Grain18]
|
||||
(gauss) phi1 299.743144 Phi 76.475096 phi2 91.184977 scatter 0.0 fraction 1.0
|
||||
[Grain19]
|
||||
(gauss) phi1 280.13643 Phi 27.439718 phi2 167.871878 scatter 0.0 fraction 1.0
|
||||
[Grain20]
|
||||
(gauss) phi1 313.204373 Phi 68.676053 phi2 87.993213 scatter 0.0 fraction 1.0
|
|
@ -0,0 +1,2 @@
|
|||
itmin 4
|
||||
itmax 40
|
|
@ -0,0 +1 @@
|
|||
fdot 0 0 1.0e-3 0 0 0 0 0 0 stress * * * * * * * * * time 60 incs 120 freq 20
|
Loading…
Reference in New Issue