remove obsolete constitutive field modules

This commit is contained in:
Pratheek Shanthraj 2014-09-22 20:57:12 +00:00
parent cb4117df95
commit bb7f9be6ea
3 changed files with 0 additions and 753 deletions

View File

@ -113,10 +113,8 @@ end module DAMASK_interface
#include "lattice.f90"
#include "damage_none.f90"
#include "damage_local.f90"
#include "damage_gradient.f90"
#include "constitutive_damage.f90"
#include "thermal_none.f90"
#include "thermal_conduction.f90"
#include "thermal_adiabatic.f90"
#include "constitutive_thermal.f90"
#include "constitutive_none.f90"

View File

@ -1,411 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id: damage_gradient.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating dislocation and twinning physics
!> @details to be done
!--------------------------------------------------------------------------------------------------
module damage_gradient
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
damage_gradient_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
damage_gradient_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
damage_gradient_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
damage_gradient_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, public :: &
damage_gradient_crack_mobility, &
damage_gradient_aTol
enum, bind(c)
enumerator :: undefined_ID, &
local_damage_ID, &
gradient_damage_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
damage_gradient_outputID !< ID of each post result output
public :: &
damage_gradient_init, &
damage_gradient_stateInit, &
damage_gradient_aTolState, &
damage_gradient_microstructure, &
damage_gradient_dotState, &
damage_gradient_damageValue, &
damage_gradient_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_damage, &
phase_damageInstance, &
phase_Noutput, &
DAMAGE_GRADIENT_label, &
DAMAGE_gradient_ID, &
material_phase, &
damageState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_GRADIENT_label//' init -+>>>'
write(6,'(a)') ' $Id: damage_gradient.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_damage == DAMAGE_gradient_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(damage_gradient_sizePostResults(maxNinstance), source=0_pInt)
allocate(damage_gradient_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(damage_gradient_output(maxval(phase_Noutput),maxNinstance))
damage_gradient_output = ''
allocate(damage_gradient_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(damage_gradient_Noutput(maxNinstance), source=0_pInt)
allocate(damage_gradient_crack_mobility(maxNinstance), source=0.0_pReal)
allocate(damage_gradient_aTol(maxNinstance), source=0.001_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_damage(phase) == DAMAGE_gradient_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_damageInstance(phase) ! which instance of my damage is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('local_damage')
damage_gradient_Noutput(instance) = damage_gradient_Noutput(instance) + 1_pInt
damage_gradient_outputID(damage_gradient_Noutput(instance),instance) = local_damage_ID
damage_gradient_output(damage_gradient_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
case ('gradient_damage')
damage_gradient_Noutput(instance) = damage_gradient_Noutput(instance) + 1_pInt
damage_gradient_outputID(damage_gradient_Noutput(instance),instance) = gradient_damage_ID
damage_gradient_output(damage_gradient_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('crack_mobility')
damage_gradient_crack_mobility(instance) = IO_floatValue(line,positions,2_pInt)
case ('atol_damage')
damage_gradient_aTol(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_damage)
if (phase_damage(phase) == DAMAGE_gradient_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_damageInstance(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,damage_gradient_Noutput(instance)
select case(damage_gradient_outputID(o,instance))
case(local_damage_ID, &
gradient_damage_ID &
)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
damage_gradient_sizePostResult(o,instance) = mySize
damage_gradient_sizePostResults(instance) = damage_gradient_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = 1_pInt
sizeState = 3_pInt
damageState(phase)%sizeState = sizeState
damageState(phase)%sizeDotState = sizeDotState
damageState(phase)%sizePostResults = damage_gradient_sizePostResults(instance)
allocate(damageState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(damageState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(damageState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(damageState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(damageState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call damage_gradient_stateInit(phase,instance)
call damage_gradient_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine damage_gradient_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this damage
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_stateInit(phase,instance)
use material, only: &
damageState
implicit none
integer(pInt), intent(in) :: instance !< number specifying the instance of the damage
integer(pInt), intent(in) :: phase !< number specifying the phase of the damage
real(pReal), dimension(damageState(phase)%sizeState) :: tempState
tempState(1:2) = 0.0_pReal
tempState(3) = 1.0_pReal
damageState(phase)%state = spread(tempState,2,size(damageState(phase)%state(1,:)))
damageState(phase)%state0 = damageState(phase)%state
damageState(phase)%partionedState0 = damageState(phase)%state
end subroutine damage_gradient_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this damage
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_aTolState(phase,instance)
use material, only: &
damageState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the damage
real(pReal), dimension(damageState(phase)%sizeState) :: tempTol
tempTol = damage_gradient_aTol(instance)
damageState(phase)%aTolState = tempTol
end subroutine damage_gradient_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_microstructure(Tstar_v, Fe, ipc, ip, el)
use material, only: &
mappingConstitutive, &
damageState
use math, only: &
math_Mandel66to3333, &
math_mul33x33, &
math_mul3333xx33, &
math_transpose33, &
math_trace33, &
math_I3
use lattice, only: &
lattice_surfaceEnergy33, &
lattice_C66
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Fe
integer(pInt) :: &
phase, constituent
real(pReal) :: &
strainEnergy, pressure, stress(3,3), strain(3,3)
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
strain = 0.5_pReal*(math_mul33x33(math_transpose33(Fe),Fe)-math_I3)
stress = math_mul3333xx33(math_Mandel66to3333(lattice_C66(1:6,1:6,phase)),strain)
pressure = math_trace33(stress)/3.0_pReal
if (pressure < 0.0_pReal) stress = stress - pressure*math_I3
strainEnergy = 0.5*sum(abs(stress*strain))
damageState(phase)%state(2,constituent) = strainEnergy/ &
(math_trace33(lattice_surfaceEnergy33(1:3,1:3,phase))/3.0_pReal) + &
damageState(phase)%state(1,constituent)
end subroutine damage_gradient_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_dotState(Tstar_v, Fe, Lp, ipc, ip, el)
use material, only: &
mappingConstitutive, &
damageState
use math, only: &
math_Mandel66to3333, &
math_mul33x33, &
math_mul3333xx33, &
math_transpose33, &
math_trace33, &
math_I3
use lattice, only: &
lattice_C66, &
lattice_surfaceEnergy33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Fe, Lp
integer(pInt) :: &
phase, constituent
real(pReal), dimension(3,3) :: &
stress, strain
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
strain = 0.5_pReal*(math_mul33x33(math_transpose33(Fe),Fe)-math_I3)
stress = math_mul3333xx33(math_Mandel66to3333(lattice_C66(1:6,1:6,phase)), strain)
damageState(phase)%dotState(1,constituent) = &
sum(abs(stress*Lp))/ &
(math_trace33(lattice_surfaceEnergy33(1:3,1:3,phase))/3.0_pReal)
end subroutine damage_gradient_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns temperature based on gradient damage model state layout
!--------------------------------------------------------------------------------------------------
function damage_gradient_damageValue(ipc, ip, el)
use material, only: &
mappingConstitutive, &
damageState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal) :: damage_gradient_damageValue
damage_gradient_damageValue = &
damageState(mappingConstitutive(2,ipc,ip,el))%state(3,mappingConstitutive(1,ipc,ip,el))* &
damageState(mappingConstitutive(2,ipc,ip,el))%state(3,mappingConstitutive(1,ipc,ip,el))
end function damage_gradient_damageValue
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function damage_gradient_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_damageInstance,&
damageState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(damage_gradient_sizePostResults(phase_damageInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
damage_gradient_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_damageInstance(phase)
c = 0_pInt
damage_gradient_postResults = 0.0_pReal
do o = 1_pInt,damage_gradient_Noutput(instance)
select case(damage_gradient_outputID(o,instance))
case (local_damage_ID)
damage_gradient_postResults(c+1_pInt) = damageState(phase)%state(2,constituent)
c = c + 1
case (gradient_damage_ID)
damage_gradient_postResults(c+1_pInt) = damageState(phase)%state(3,constituent)* &
damageState(phase)%state(3,constituent)
c = c + 1
end select
enddo
end function damage_gradient_postResults
end module damage_gradient

View File

@ -1,340 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating dislocation and twinning physics
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_conduction_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_conduction_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_conduction_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, public :: &
thermal_conduction_specific_heat, &
thermal_conduction_density
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init, &
thermal_conduction_stateInit, &
thermal_conduction_aTolState, &
thermal_conduction_microstructure, &
thermal_conduction_temperature, &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_thermal, &
phase_thermalInstance, &
phase_Noutput, &
THERMAL_CONDUCTION_label, &
THERMAL_conduction_ID, &
material_phase, &
thermalState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'
write(6,'(a)') ' $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_thermal == THERMAL_conduction_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_conduction_output(maxval(phase_Noutput),maxNinstance))
thermal_conduction_output = ''
allocate(thermal_conduction_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(thermal_conduction_Noutput(maxNinstance), source=0_pInt)
allocate(thermal_conduction_specific_heat(maxNinstance), source=0.0_pReal)
allocate(thermal_conduction_density(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_thermal(phase) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_thermalInstance(phase) ! which instance of my thermal is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('temperature')
thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt
thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID
thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('specific_heat')
thermal_conduction_specific_heat(instance) = IO_floatValue(line,positions,2_pInt)
case ('density')
thermal_conduction_density(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_thermal)
if (phase_thermal(phase) == THERMAL_conduction_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_thermalInstance(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_conduction_sizePostResult(o,instance) = mySize
thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = 0_pInt
sizeState = 2_pInt
thermalState(phase)%sizeState = sizeState
thermalState(phase)%sizeDotState = sizeDotState
thermalState(phase)%sizePostResults = thermal_conduction_sizePostResults(instance)
allocate(thermalState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(thermalState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call thermal_conduction_stateInit(phase,instance)
call thermal_conduction_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_stateInit(phase,instance)
use material, only: &
thermalState
use lattice, only: &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: instance !< number specifying the instance of the thermal
integer(pInt), intent(in) :: phase !< number specifying the phase of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempState
tempState(1) = 0.0_pReal
tempState(2) = lattice_referenceTemperature(phase)
thermalState(phase)%state = spread(tempState,2,size(thermalState(phase)%state(1,:)))
thermalState(phase)%state0 = thermalState(phase)%state
thermalState(phase)%partionedState0 = thermalState(phase)%state
end subroutine thermal_conduction_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_aTolState(phase,instance)
use material, only: &
thermalState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempTol
tempTol = 1.0_pReal
thermalState(phase)%aTolState = tempTol
end subroutine thermal_conduction_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_microstructure(Tstar_v, Lp, ipc, ip, el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
use math, only: &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
integer(pInt) :: &
instance, phase, constituent
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
thermalState(phase)%state(1,constituent) = &
sum(abs(math_Mandel6to33(Tstar_v)*Lp))
end subroutine thermal_conduction_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief returns temperature based on conduction thermal model state layout
!--------------------------------------------------------------------------------------------------
function thermal_conduction_temperature(ipc, ip, el)
use material, only: &
mappingConstitutive, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal) :: thermal_conduction_temperature
thermal_conduction_temperature = &
thermalState(mappingConstitutive(2,ipc,ip,el))%state(2,mappingConstitutive(1,ipc,ip,el))
end function thermal_conduction_temperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function thermal_conduction_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_conduction_sizePostResults(phase_thermalInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
thermal_conduction_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
c = 0_pInt
thermal_conduction_postResults = 0.0_pReal
do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
thermal_conduction_postResults(c+1_pInt) = thermalState(phase)%state(2,constituent)
c = c + 1
end select
enddo
end function thermal_conduction_postResults
end module thermal_conduction