WIP: debugging
This commit is contained in:
parent
0041d21777
commit
baeb449e07
|
@ -503,7 +503,7 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
|
|||
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
||||
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
||||
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar,ipc,ip,el)
|
||||
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
||||
call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
||||
|
|
|
@ -68,6 +68,9 @@ module plastic_phenopowerlaw
|
|||
interaction_SlipTwin, & !< slip resistance from twin activity
|
||||
interaction_TwinSlip, & !< twin resistance from slip activity
|
||||
interaction_TwinTwin !< twin resistance from twin activity
|
||||
real(pReal), dimension(:,:), allocatable :: &
|
||||
Schmid_slip6, &
|
||||
Schmid_twin6
|
||||
real(pReal), dimension(:,:,:), allocatable :: &
|
||||
Schmid_slip, &
|
||||
Schmid_twin
|
||||
|
@ -360,21 +363,25 @@ subroutine plastic_phenopowerlaw_init
|
|||
allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff),prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff),prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%Schmid_slip6(6,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
||||
i = 0_pInt
|
||||
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) ! >>> interaction slip -- X
|
||||
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
|
||||
|
||||
mySlipSystems: do j = 1_pInt,prm%Nslip(f)
|
||||
i = i + 1_pInt
|
||||
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,index_myFamily+j,p)
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
prm%nonSchmid_pos(1:3,1:3,k,i) = lattice_Sslip(1:3,1:3,2*k, index_myFamily+j,p) &
|
||||
* prm%nonSchmidCoeff(k)
|
||||
prm%nonSchmid_neg(1:3,1:3,k,i) = lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+j,p) &
|
||||
* prm%nonSchmidCoeff(k)
|
||||
enddo
|
||||
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||
prm%Schmid_slip6(1:6,i) = lattice_Sslip_v(1:6,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||
!prm%nonSchmid_pos(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||
!prm%nonSchmid_neg(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||
!do k = 1,size(prm%nonSchmidCoeff)
|
||||
! prm%nonSchmid_pos(1:3,1:3,k+1,i) = lattice_Sslip(1:3,1:3,2*k, index_myFamily+j,p) &
|
||||
! * prm%nonSchmidCoeff(k)
|
||||
! prm%nonSchmid_neg(1:3,1:3,k+1,i) = lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+j,p) &
|
||||
! * prm%nonSchmidCoeff(k)
|
||||
!enddo
|
||||
otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
otherSlipSystems: do k = 1_pInt,prm%Nslip(o)
|
||||
|
@ -403,14 +410,16 @@ subroutine plastic_phenopowerlaw_init
|
|||
allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%Schmid_twin6(6,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
|
||||
i = 0_pInt
|
||||
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
|
||||
index_myFamily = sum(prm%Ntwin(1:f-1_pInt))
|
||||
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
|
||||
i = i + 1_pInt
|
||||
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,index_myFamily+j,p)
|
||||
prm%shear_twin(i) = lattice_shearTwin(index_myFamily+j,p)
|
||||
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
|
||||
prm%Schmid_twin6(1:6,i) = lattice_Stwin_v(1:6,sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
||||
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
||||
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
slipSystems: do k = 1_pInt,prm%Nslip(o)
|
||||
|
@ -491,11 +500,12 @@ end subroutine plastic_phenopowerlaw_init
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,ip,el)
|
||||
subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,el)
|
||||
use prec, only: &
|
||||
dNeq0
|
||||
use math, only: &
|
||||
math_mul33xx33,&
|
||||
math_Mandel33to6, &
|
||||
math_Plain3333to99
|
||||
use material, only: &
|
||||
phasememberAt, &
|
||||
|
@ -512,8 +522,8 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
|
|||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mstar !< Mandel stress
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Mstar_v !< Mandel stress
|
||||
|
||||
integer(pInt) :: &
|
||||
index_myFamily, &
|
||||
|
@ -536,41 +546,37 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
|
|||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dMstar = 0.0_pReal
|
||||
dLp_dMstar99 = 0.0_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Slip part
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
|
||||
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_pos = dot_product(Mstar_v,prm%Schmid_slip6(1:6,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos &
|
||||
+ math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg &
|
||||
+ math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo
|
||||
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* &
|
||||
((abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_pos)
|
||||
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip* &
|
||||
((abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_neg)
|
||||
!do k = 1,size(prm%nonSchmidCoeff)
|
||||
! tau_slip_pos = tau_slip_pos &
|
||||
! + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
! tau_slip_neg = tau_slip_neg &
|
||||
! + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
!enddo
|
||||
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos)
|
||||
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg)
|
||||
|
||||
Lp = Lp + (1.0_pReal-stt%sumF(of))*&
|
||||
(gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
|
||||
Lp = Lp + (1.0_pReal-stt%sumF(of))*(gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
|
||||
|
||||
if (dNeq0(tau_slip_pos)) then
|
||||
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) &
|
||||
+ dgdot_dtauslip_pos*prm%Schmid_slip(k,l,j) &
|
||||
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_pos(m,n,:,j)))
|
||||
+ dgdot_dtauslip_pos*prm%Schmid_slip(k,l,j)*prm%Schmid_slip(m,n,j)!sum(prm%nonSchmid_pos(m,n,:,j),3)
|
||||
endif
|
||||
if (dNeq0(tau_slip_neg)) then
|
||||
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) &
|
||||
+ dgdot_dtauslip_neg*prm%Schmid_slip(k,l,j) &
|
||||
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_neg(m,n,:,j)))
|
||||
+ dgdot_dtauslip_neg*prm%Schmid_slip(k,l,j)*prm%Schmid_slip(m,n,j)!sum(prm%nonSchmid_neg(m,n,:,j),3)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
@ -579,7 +585,7 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
|
|||
! Twinning part
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
|
||||
tau_twin = math_mul33xx33(Mstar,prm%Schmid_twin(1:3,1:3,j))
|
||||
tau_twin = dot_product(Mstar_v,prm%Schmid_twin6(1:6,j))
|
||||
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin&
|
||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
||||
|
@ -628,8 +634,8 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
ssat_offset, &
|
||||
tau_slip_pos,tau_slip_neg,tau_twin
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
Mstar
|
||||
!real(pReal), dimension(3,3) :: &
|
||||
! Mstar
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
gdot_slip,left_SlipSlip,right_SlipSlip
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
||||
|
@ -644,7 +650,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
dst%whole(:,of) = 0.0_pReal
|
||||
Mstar = math_Mandel6to33(Mstar6)
|
||||
!Mstar = math_Mandel6to33(Mstar6)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
||||
|
@ -660,20 +666,20 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
|
||||
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
|
||||
|
||||
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo nonSchmidSystems
|
||||
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
! tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
!enddo nonSchmidSystems
|
||||
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* & !ToDo: save to dotState
|
||||
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) &
|
||||
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg))
|
||||
( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
|
||||
+ sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
|
||||
enddo
|
||||
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
tau_twin = math_mul33xx33(Mstar,prm%Schmid_twin(1:3,1:3,j))
|
||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* (abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
|
||||
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
|
||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
enddo
|
||||
|
||||
|
@ -727,8 +733,8 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
|||
ip, & !< integration point
|
||||
el !< element !< microstructure state
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
Mstar
|
||||
!real(pReal), dimension(3,3) :: &
|
||||
! Mstar
|
||||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
||||
plastic_phenopowerlaw_postResults
|
||||
|
||||
|
@ -744,7 +750,6 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
|||
of = phasememberAt(ipc,ip,el)
|
||||
associate( prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))) )
|
||||
Mstar = math_Mandel6to33(Mstar6)
|
||||
|
||||
plastic_phenopowerlaw_postResults = 0.0_pReal
|
||||
c = 0_pInt
|
||||
|
@ -761,21 +766,21 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
|||
|
||||
case (shearrate_slip_ID)
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo nonSchmidSystems
|
||||
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
! tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
!enddo nonSchmidSystems
|
||||
plastic_phenopowerlaw_postResults(c+j) = prm%gdot0_slip*0.5_pReal* &
|
||||
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) &
|
||||
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg))
|
||||
( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
|
||||
+sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (resolvedstress_slip_ID)
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
|
||||
|
@ -795,7 +800,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
|||
|
||||
case (shearrate_twin_ID)
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
tau_twin = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
||||
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
||||
prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**&
|
||||
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
|
@ -804,7 +809,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
|||
|
||||
case (resolvedstress_twin_ID)
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
|
||||
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
||||
enddo
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
|
|
Loading…
Reference in New Issue