WIP: debugging

This commit is contained in:
Martin Diehl 2018-08-29 08:18:32 +02:00
parent 0041d21777
commit baeb449e07
2 changed files with 64 additions and 59 deletions

View File

@ -503,7 +503,7 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
case (PLASTICITY_ISOTROPIC_ID) plasticityType case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el) call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar,ipc,ip,el) call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_KINEHARDENING_ID) plasticityType case (PLASTICITY_KINEHARDENING_ID) plasticityType
call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el) call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_NONLOCAL_ID) plasticityType case (PLASTICITY_NONLOCAL_ID) plasticityType

View File

@ -68,6 +68,9 @@ module plastic_phenopowerlaw
interaction_SlipTwin, & !< slip resistance from twin activity interaction_SlipTwin, & !< slip resistance from twin activity
interaction_TwinSlip, & !< twin resistance from slip activity interaction_TwinSlip, & !< twin resistance from slip activity
interaction_TwinTwin !< twin resistance from twin activity interaction_TwinTwin !< twin resistance from twin activity
real(pReal), dimension(:,:), allocatable :: &
Schmid_slip6, &
Schmid_twin6
real(pReal), dimension(:,:,:), allocatable :: & real(pReal), dimension(:,:,:), allocatable :: &
Schmid_slip, & Schmid_slip, &
Schmid_twin Schmid_twin
@ -360,21 +363,25 @@ subroutine plastic_phenopowerlaw_init
allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal) allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal) allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal) allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff),prm%totalNslip),source = 0.0_pReal) allocate(prm%Schmid_slip6(6,prm%totalNslip),source = 0.0_pReal)
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff),prm%totalNslip),source = 0.0_pReal) allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
i = 0_pInt i = 0_pInt
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) ! >>> interaction slip -- X mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) ! >>> interaction slip -- X
index_myFamily = sum(prm%Nslip(1:f-1_pInt)) index_myFamily = sum(prm%Nslip(1:f-1_pInt))
mySlipSystems: do j = 1_pInt,prm%Nslip(f) mySlipSystems: do j = 1_pInt,prm%Nslip(f)
i = i + 1_pInt i = i + 1_pInt
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,index_myFamily+j,p) prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
do k = 1,size(prm%nonSchmidCoeff) prm%Schmid_slip6(1:6,i) = lattice_Sslip_v(1:6,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
prm%nonSchmid_pos(1:3,1:3,k,i) = lattice_Sslip(1:3,1:3,2*k, index_myFamily+j,p) & !prm%nonSchmid_pos(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
* prm%nonSchmidCoeff(k) !prm%nonSchmid_neg(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
prm%nonSchmid_neg(1:3,1:3,k,i) = lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+j,p) & !do k = 1,size(prm%nonSchmidCoeff)
* prm%nonSchmidCoeff(k) ! prm%nonSchmid_pos(1:3,1:3,k+1,i) = lattice_Sslip(1:3,1:3,2*k, index_myFamily+j,p) &
enddo ! * prm%nonSchmidCoeff(k)
! prm%nonSchmid_neg(1:3,1:3,k+1,i) = lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+j,p) &
! * prm%nonSchmidCoeff(k)
!enddo
otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1) otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
otherSlipSystems: do k = 1_pInt,prm%Nslip(o) otherSlipSystems: do k = 1_pInt,prm%Nslip(o)
@ -403,14 +410,16 @@ subroutine plastic_phenopowerlaw_init
allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal) allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal)
allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal) allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal) allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_twin6(6,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal) allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
i = 0_pInt i = 0_pInt
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
index_myFamily = sum(prm%Ntwin(1:f-1_pInt)) index_myFamily = sum(prm%Ntwin(1:f-1_pInt))
myTwinSystems: do j = 1_pInt,prm%Ntwin(f) myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
i = i + 1_pInt i = i + 1_pInt
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,index_myFamily+j,p) prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
prm%shear_twin(i) = lattice_shearTwin(index_myFamily+j,p) prm%Schmid_twin6(1:6,i) = lattice_Stwin_v(1:6,sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
slipFamilies: do o = 1_pInt,size(prm%Nslip,1) slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt)) index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
slipSystems: do k = 1_pInt,prm%Nslip(o) slipSystems: do k = 1_pInt,prm%Nslip(o)
@ -491,11 +500,12 @@ end subroutine plastic_phenopowerlaw_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent !> @brief calculates plastic velocity gradient and its tangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,ip,el) subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,el)
use prec, only: & use prec, only: &
dNeq0 dNeq0
use math, only: & use math, only: &
math_mul33xx33,& math_mul33xx33,&
math_Mandel33to6, &
math_Plain3333to99 math_Plain3333to99
use material, only: & use material, only: &
phasememberAt, & phasememberAt, &
@ -512,8 +522,8 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
ipc, & !< component-ID of integration point ipc, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(6), intent(in) :: &
Mstar !< Mandel stress Mstar_v !< Mandel stress
integer(pInt) :: & integer(pInt) :: &
index_myFamily, & index_myFamily, &
@ -536,41 +546,37 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
Lp = 0.0_pReal Lp = 0.0_pReal
dLp_dMstar = 0.0_pReal dLp_dMstar = 0.0_pReal
dLp_dMstar99 = 0.0_pReal
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Slip part ! Slip part
do j = 1_pInt, prm%totalNslip do j = 1_pInt, prm%totalNslip
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) tau_slip_pos = dot_product(Mstar_v,prm%Schmid_slip6(1:6,j))
tau_slip_neg = tau_slip_pos tau_slip_neg = tau_slip_pos
do k = 1,size(prm%nonSchmidCoeff) !do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos & ! tau_slip_pos = tau_slip_pos &
+ math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j)) ! + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
tau_slip_neg = tau_slip_neg & ! tau_slip_neg = tau_slip_neg &
+ math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j)) ! + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
enddo !enddo
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* & gdot_slip_pos = 0.5_pReal*prm%gdot0_slip &
((abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_pos) * sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos)
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip* & gdot_slip_neg = 0.5_pReal*prm%gdot0_slip &
((abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_neg) * sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg)
Lp = Lp + (1.0_pReal-stt%sumF(of))*& Lp = Lp + (1.0_pReal-stt%sumF(of))*(gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
(gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
if (dNeq0(tau_slip_pos)) then if (dNeq0(tau_slip_pos)) then
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) & dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) &
+ dgdot_dtauslip_pos*prm%Schmid_slip(k,l,j) & + dgdot_dtauslip_pos*prm%Schmid_slip(k,l,j)*prm%Schmid_slip(m,n,j)!sum(prm%nonSchmid_pos(m,n,:,j),3)
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_pos(m,n,:,j)))
endif endif
if (dNeq0(tau_slip_neg)) then if (dNeq0(tau_slip_neg)) then
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) & dLp_dMstar(k,l,m,n) = dLp_dMstar(k,l,m,n) &
+ dgdot_dtauslip_neg*prm%Schmid_slip(k,l,j) & + dgdot_dtauslip_neg*prm%Schmid_slip(k,l,j)*prm%Schmid_slip(m,n,j)!sum(prm%nonSchmid_neg(m,n,:,j),3)
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_neg(m,n,:,j)))
endif endif
enddo enddo
@ -579,7 +585,7 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
! Twinning part ! Twinning part
do j = 1_pInt, prm%totalNtwin do j = 1_pInt, prm%totalNtwin
tau_twin = math_mul33xx33(Mstar,prm%Schmid_twin(1:3,1:3,j)) tau_twin = dot_product(Mstar_v,prm%Schmid_twin6(1:6,j))
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin& gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin&
* max(0.0_pReal,sign(1.0_pReal,tau_twin)) * max(0.0_pReal,sign(1.0_pReal,tau_twin))
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j) Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
@ -628,8 +634,8 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
ssat_offset, & ssat_offset, &
tau_slip_pos,tau_slip_neg,tau_twin tau_slip_pos,tau_slip_neg,tau_twin
real(pReal), dimension(3,3) :: & !real(pReal), dimension(3,3) :: &
Mstar ! Mstar
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: & real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
gdot_slip,left_SlipSlip,right_SlipSlip gdot_slip,left_SlipSlip,right_SlipSlip
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: & real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
@ -644,7 +650,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el))))
dst%whole(:,of) = 0.0_pReal dst%whole(:,of) = 0.0_pReal
Mstar = math_Mandel6to33(Mstar6) !Mstar = math_Mandel6to33(Mstar6)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
@ -660,20 +666,20 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip & right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) * sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
tau_slip_neg = tau_slip_pos tau_slip_neg = tau_slip_pos
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff) !nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j)) ! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j)) ! tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
enddo nonSchmidSystems !enddo nonSchmidSystems
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* & !ToDo: save to dotState gdot_slip(j) = prm%gdot0_slip*0.5_pReal* & !ToDo: save to dotState
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) & ( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg)) + sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
enddo enddo
do j = 1_pInt, prm%totalNtwin do j = 1_pInt, prm%totalNtwin
tau_twin = math_mul33xx33(Mstar,prm%Schmid_twin(1:3,1:3,j)) tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* (abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
* max(0.0_pReal,sign(1.0_pReal,tau_twin)) * max(0.0_pReal,sign(1.0_pReal,tau_twin))
enddo enddo
@ -727,8 +733,8 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
ip, & !< integration point ip, & !< integration point
el !< element !< microstructure state el !< element !< microstructure state
real(pReal), dimension(3,3) :: & !real(pReal), dimension(3,3) :: &
Mstar ! Mstar
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: & real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
plastic_phenopowerlaw_postResults plastic_phenopowerlaw_postResults
@ -744,7 +750,6 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
associate( prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), & associate( prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))) ) stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))) )
Mstar = math_Mandel6to33(Mstar6)
plastic_phenopowerlaw_postResults = 0.0_pReal plastic_phenopowerlaw_postResults = 0.0_pReal
c = 0_pInt c = 0_pInt
@ -761,21 +766,21 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (shearrate_slip_ID) case (shearrate_slip_ID)
do j = 1_pInt, prm%totalNslip do j = 1_pInt, prm%totalNslip
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
tau_slip_neg = tau_slip_pos tau_slip_neg = tau_slip_pos
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff) !nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j)) ! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j)) ! tau_slip_neg = tau_slip_neg + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
enddo nonSchmidSystems !enddo nonSchmidSystems
plastic_phenopowerlaw_postResults(c+j) = prm%gdot0_slip*0.5_pReal* & plastic_phenopowerlaw_postResults(c+j) = prm%gdot0_slip*0.5_pReal* &
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) & ( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg)) +sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
enddo enddo
c = c + prm%totalNslip c = c + prm%totalNslip
case (resolvedstress_slip_ID) case (resolvedstress_slip_ID)
do j = 1_pInt, prm%totalNslip do j = 1_pInt, prm%totalNslip
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
enddo enddo
c = c + prm%totalNslip c = c + prm%totalNslip
@ -795,7 +800,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (shearrate_twin_ID) case (shearrate_twin_ID)
do j = 1_pInt, prm%totalNtwin do j = 1_pInt, prm%totalNtwin
tau_twin = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**& prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**&
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin)) prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
@ -804,7 +809,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (resolvedstress_twin_ID) case (resolvedstress_twin_ID)
do j = 1_pInt, prm%totalNtwin do j = 1_pInt, prm%totalNtwin
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j)) plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
enddo enddo
c = c + prm%totalNtwin c = c + prm%totalNtwin