early rename
This commit is contained in:
parent
d51b00c2d3
commit
ba9330c8dd
|
@ -612,7 +612,7 @@ end subroutine plastic_phenopowerlaw_LpAndItsTangent
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates the rate of change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
||||
subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
||||
use lattice, only: &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin_v, &
|
||||
|
@ -626,7 +626,7 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
Mstar6 !< Mandel stress
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
|
@ -678,13 +678,13 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot gamma
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_pos = dot_product(Mstar6,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos &
|
||||
+ dot_product(Tstar_v,prm%nonSchmidCoeff(k)*lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph))
|
||||
+ dot_product(Mstar6,prm%nonSchmidCoeff(k)*lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg &
|
||||
+ dot_product(Tstar_v,prm%nonSchmidCoeff(k)*lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
+ dot_product(Mstar6,prm%nonSchmidCoeff(k)*lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
enddo nonSchmidSystems
|
||||
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* &
|
||||
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) &
|
||||
|
@ -700,7 +700,7 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot vol frac
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
tau_twin = dot_product(Mstar6,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
||||
prm%gdot0_twin*&
|
||||
(abs(tau_twin)/stt%s_twin(j,of))**&
|
||||
|
@ -738,7 +738,7 @@ end subroutine plastic_phenopowerlaw_dotState
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return array of constitutive results
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
||||
function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
plasticState, &
|
||||
|
@ -753,7 +753,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
Mstar6 !< Mandel stress
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
|
@ -798,13 +798,13 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
slipSystems1: do i = 1_pInt,prm%Nslip(f)
|
||||
j = j + 1_pInt
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_pos = dot_product(Mstar6,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
do k = 1,lattice_NnonSchmid(ph)
|
||||
tau_slip_pos = tau_slip_pos +prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
||||
dot_product(Mstar6,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg +prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
dot_product(Mstar6,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
enddo
|
||||
plastic_phenopowerlaw_postResults(c+j) = prm%gdot0_slip*0.5_pReal* &
|
||||
((abs(tau_slip_pos)/stt%s_slip(j,of))**prm%n_slip &
|
||||
|
@ -822,7 +822,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
slipSystems2: do i = 1_pInt,prm%Nslip(f)
|
||||
j = j + 1_pInt
|
||||
plastic_phenopowerlaw_postResults(c+j) = &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
dot_product(Mstar6,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
enddo slipSystems2
|
||||
enddo slipFamilies2
|
||||
c = c + prm%totalNslip
|
||||
|
@ -847,7 +847,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems1: do i = 1_pInt,prm%Ntwin(f)
|
||||
j = j + 1_pInt
|
||||
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
tau = dot_product(Mstar6,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
||||
prm%gdot0_twin*&
|
||||
(abs(tau)/stt%s_twin(j,of))**&
|
||||
|
@ -863,7 +863,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
twinSystems2: do i = 1_pInt,prm%Ntwin(f)
|
||||
j = j + 1_pInt
|
||||
plastic_phenopowerlaw_postResults(c+j) = &
|
||||
dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
dot_product(Mstar6,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
enddo twinSystems2
|
||||
enddo twinFamilies2
|
||||
c = c + prm%totalNtwin
|
||||
|
|
Loading…
Reference in New Issue