clearer structure and faster
This commit is contained in:
parent
41ca00a020
commit
ba8eab646b
|
@ -3,4 +3,6 @@
|
|||
*.xdmf
|
||||
*.sta
|
||||
*.vt*
|
||||
*.geom
|
||||
*.seeds
|
||||
postProc
|
||||
|
|
|
@ -15,7 +15,7 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
|
||||
def laguerreTessellation(undeformed, coords, weights, grains, periodic = True, cpus = 2):
|
||||
def Laguerre_tesselation(grid, coords, weights, grains, periodic = True, cpus = 2):
|
||||
|
||||
def findClosestSeed(fargs):
|
||||
point, seeds, myWeights = fargs
|
||||
|
@ -62,28 +62,31 @@ def laguerreTessellation(undeformed, coords, weights, grains, periodic = True, c
|
|||
try: seeds = np.append(seeds, coords+vec, axis=0) # ... (1+a,2+a,3+a,...,1+z,2+z,3+z)
|
||||
except NameError: seeds = coords+vec
|
||||
|
||||
if (repeatweights == 0.0).all(): # standard Voronoi (no weights, KD tree)
|
||||
myKDTree = spatial.cKDTree(seeds)
|
||||
devNull,closestSeeds = myKDTree.query(undeformed)
|
||||
else:
|
||||
damask.util.croak('...using {} cpu{}'.format(options.cpus, 's' if options.cpus > 1 else ''))
|
||||
arguments = [[arg,seeds,repeatweights] for arg in list(undeformed)]
|
||||
damask.util.croak('...using {} cpu{}'.format(options.cpus, 's' if options.cpus > 1 else ''))
|
||||
arguments = [[arg,seeds,repeatweights] for arg in list(grid)]
|
||||
|
||||
if cpus > 1: # use multithreading
|
||||
pool = multiprocessing.Pool(processes = cpus) # initialize workers
|
||||
result = pool.map_async(findClosestSeed, arguments) # evaluate function in parallel
|
||||
pool.close()
|
||||
pool.join()
|
||||
closestSeeds = np.array(result.get()).flatten()
|
||||
else:
|
||||
closestSeeds = np.zeros(len(arguments),dtype='i')
|
||||
for i,arg in enumerate(arguments):
|
||||
closestSeeds[i] = findClosestSeed(arg)
|
||||
if cpus > 1: # use multithreading
|
||||
pool = multiprocessing.Pool(processes = cpus) # initialize workers
|
||||
result = pool.map_async(findClosestSeed, arguments) # evaluate function in parallel
|
||||
pool.close()
|
||||
pool.join()
|
||||
closestSeeds = np.array(result.get()).flatten()
|
||||
else:
|
||||
closestSeeds = np.zeros(len(arguments),dtype='i')
|
||||
for i,arg in enumerate(arguments):
|
||||
closestSeeds[i] = findClosestSeed(arg)
|
||||
|
||||
# closestSeed is modulo number of original seed points (i.e. excluding periodic copies)
|
||||
return grains[closestSeeds%coords.shape[0]]
|
||||
|
||||
|
||||
def Voronoi_tessellation(grid, coords, grains, size, periodic = True):
|
||||
|
||||
KDTree = spatial.cKDTree(coords,boxsize=size) if periodic else spatial.cKDTree(coords)
|
||||
devNull,closestSeeds = KDTree.query(grid)
|
||||
return grains[closestSeeds]
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
@ -221,7 +224,8 @@ for name in filenames:
|
|||
|
||||
hasGrains = table.label_dimension(options.microstructure) == 1
|
||||
hasEulers = table.label_dimension(options.eulers) == 3
|
||||
hasWeights = table.label_dimension(options.weight) == 1 and options.laguerre
|
||||
if options.laguerre and table.label_dimension(options.weight) != 1:
|
||||
errors.append('missing seed weights...')
|
||||
|
||||
for i in range(3):
|
||||
if info['size'][i] <= 0.0: # any invalid size?
|
||||
|
@ -239,8 +243,6 @@ for name in filenames:
|
|||
else: labels += [options.eulers]
|
||||
if not hasGrains: remarks.append('missing seed microstructure indices...')
|
||||
else: labels += [options.microstructure]
|
||||
if options.laguerre and not hasWeights: remarks.append('missing seed weights...')
|
||||
else: labels += [options.weight]
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
|
@ -257,15 +259,18 @@ for name in filenames:
|
|||
else np.zeros(3*len(coords))
|
||||
grains = table.data[:,table.label_indexrange(options.microstructure)].astype(int) if hasGrains \
|
||||
else np.arange(len(coords))+1
|
||||
weights = table.data[:,table.label_indexrange(options.weight)] if hasWeights \
|
||||
else np.zeros(len(coords))
|
||||
|
||||
grainIDs = np.unique(grains).astype('i')
|
||||
NgrainIDs = len(grainIDs)
|
||||
|
||||
# --- tessellate microstructure ------------------------------------------------------------
|
||||
grid = damask.grid_filters.cell_coord0(info['grid'],info['size']).reshape(-1,3)
|
||||
damask.util.croak('tessellating...')
|
||||
indices = laguerreTessellation(grid, coords, weights, grains, options.periodic, options.cpus)
|
||||
if options.laguerre:
|
||||
weights = table.data[:,table.label_indexrange(options.weight)]
|
||||
indices = Laguerre_tessellation(grid, coords, weights, grains, options.periodic, options.cpus)
|
||||
else:
|
||||
indices = Voronoi_tessellation(grid, coords, grains, info['size'], options.periodic)
|
||||
|
||||
config_header = []
|
||||
if options.config:
|
||||
|
|
Loading…
Reference in New Issue