reflect recent changes in orientation class

This commit is contained in:
Chen Zhang 2015-09-03 16:50:49 +00:00
parent be4068661b
commit ba418a5c97
1 changed files with 128 additions and 92 deletions

View File

@ -316,18 +316,6 @@ cdef class Quaternion:
self.z = 0.0
return self
def rotateBy_angleaxis(self, angle, axis):
self *= Quaternion.fromAngleAxis(angle, axis)
return self
def rotateBy_Eulers(self, eulers):
self *= Quaternion.fromEulers(eulers, type)
return self
def rotateBy_matrix(self, m):
self *= Quaternion.fromMatrix(m)
return self
def normalize(self):
cdef double d
@ -386,6 +374,7 @@ cdef class Quaternion:
[ 2.0*(self.x*self.z-self.y*self.w), 2.0*(self.x*self.w+self.y*self.z), 1.0-2.0*(self.x*self.x+self.y*self.y)]])
def asAngleAxis(self):
# keep the return as radians for simplicity
cdef double s,x,y
if self.w > 1:
@ -396,8 +385,12 @@ cdef class Quaternion:
y = 2*self.w * s
angle = math.atan2(y,x)
if angle < 0.0:
angle *= -1.0
s *= -1.0
return angle, np.array([1.0, 0.0, 0.0] if angle < 1e-3 else [self.x/s, self.y/s, self.z/s])
return (angle,
np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-3 else [self.x/s, self.y/s, self.z/s]) )
def asRodrigues(self):
if self.w != 0.0:
@ -405,8 +398,12 @@ cdef class Quaternion:
else:
return np.array([float('inf')]*3)
def asEulers(self,type='bunge',degrees=False):
"""conversion taken from:
def asEulers(self,
type='bunge',
degrees=False,
standardRange=False):
"""
CONVERSION TAKEN FROM:
Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Pötschke, M.; Selzer, M.
Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations
Technische Mechanik 30 (2010) pp 401--413
@ -416,11 +413,11 @@ cdef class Quaternion:
angles = [0.0,0.0,0.0]
if type.lower() == 'bunge' or type.lower() == 'zxz':
if abs(self.x - self.y) < 1e-8:
if abs(self.x) < 1e-4 and abs(self.y) < 1e-4:
x = self.w**2 - self.z**2
y = 2.*self.w*self.z
angles[0] = math.atan2(y,x)
elif abs(self.w - self.z) < 1e-8:
elif abs(self.w) < 1e-4 and abs(self.z) < 1e-4:
x = self.x**2 - self.y**2
y = 2.*self.x*self.y
angles[0] = math.atan2(y,x)
@ -439,6 +436,12 @@ cdef class Quaternion:
x = (self.w * self.x + self.y * self.z)/2./chi
y = (self.z * self.x - self.y * self.w)/2./chi
angles[2] = math.atan2(y,x)
if standardRange:
angles[0] %= 2*math.pi
if angles[1] < 0.0:
angles[1] += math.pi
angles[2] *= -1.0
angles[2] %= 2*math.pi
return np.degrees(angles) if degrees else angles
@ -524,7 +527,7 @@ cdef class Quaternion:
if m.shape != (3,3) and np.prod(m.shape) == 9:
m = m.reshape(3,3)
tr=m[0,0]+m[1,1]+m[2,2]
tr=np.trace(m)
if tr > 0.00000001:
s = math.sqrt(tr + 1.0)*2.0
@ -663,11 +666,11 @@ cdef class Symmetry:
def __cmp__(self,other):
return cmp(self.lattice,other.lattice)
def equivalentQuaternions(self,quaternion):
def symmetryQuats(self):
'''
List of symmetrically equivalent quaternions based on own symmetry.
List of symmetry operations as quaternions.
'''
if self.lattice == CUBIC:
if self.lattice == 'cubic':
symQuats = [
[ 1.0, 0.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0, 0.0 ],
@ -694,22 +697,22 @@ cdef class Symmetry:
[-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ],
[-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ],
]
elif self.lattice == HEXAGONAL:
elif self.lattice == 'hexagonal':
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
[ 0.0,1.0,0.0,0.0 ],
[ 0.0,0.0,1.0,0.0 ],
[ 0.0,0.0,0.0,1.0 ],
[-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ],
[-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ],
[ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ],
[ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
[ 0.0,0.0,0.0,1.0 ],
[-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
[-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ],
[ 0.0,1.0,0.0,0.0 ],
[ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ],
[ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ],
[ 0.0,0.0,1.0,0.0 ],
[ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ],
[ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
[-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
[ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ],
]
elif self.lattice == TETRAGONAL:
elif self.lattice == 'tetragonal':
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
[ 0.0,1.0,0.0,0.0 ],
@ -720,7 +723,7 @@ cdef class Symmetry:
[ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
[-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
]
elif self.lattice == ORTHORHOMBIC:
elif self.lattice == 'orthorhombic':
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
[ 0.0,1.0,0.0,0.0 ],
@ -731,9 +734,14 @@ cdef class Symmetry:
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
]
# due to the use of list comprehension, the speed grain is quite
# limited
return [quaternion*Quaternion(q) for q in symQuats]
return map(Quaternion,symQuats)
def equivalentQuaternions(self,quaternion):
'''
List of symmetrically equivalent quaternions based on own symmetry.
'''
return [quaternion*Quaternion(q) for q in self.symmetryQuats()]
def inFZ(self,R):
'''
@ -772,21 +780,23 @@ cdef class Symmetry:
cdef double epsilon = 0.0
if self.lattice == CUBIC:
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon and self.inFZ(R)
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
elif self.lattice == HEXAGONAL:
return R[0] >= math.sqrt(3)*(R[1]+epsilon) and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R)
return R[0] >= math.sqrt(3)*(R[1]+epsilon) and R[1] >= epsilon and R[2] >= epsilon
elif self.lattice == TETRAGONAL:
return R[0] >= R[1]+epsilon and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R)
return R[0] >= R[1]+epsilon and R[1] >= epsilon and R[2] >= epsilon
elif self.lattice == ORTHORHOMBIC:
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R)
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
else:
return True
def inSST(self,vector,color = False):
def inSST(self,
vector,
color = False):
'''
Check whether given vector falls into standard stereographic triangle of own symmetry.
Return inverse pole figure color if requested.
@ -826,7 +836,9 @@ cdef class Symmetry:
if np.all(basis == 0.0):
theComponents = -np.ones(3,'d')
else:
theComponents = np.dot(basis,np.array([vector[0],vector[1],abs(vector[2])]))
v = np.array(vector,dtype = float)
v[2] = abs(v[2]) # z component projects identical for positive and negative values
theComponents = np.dot(basis,v)
inSST = np.all(theComponents >= 0.0)
@ -924,7 +936,7 @@ cdef class Orientation:
return Orientation(quaternion=me,symmetry=self.symmetry.lattice)
def disorientation(self,other):
def disorientation_old(self,other):
'''
Disorientation between myself and given other orientation
(either reduced according to my own symmetry or given one)
@ -944,6 +956,30 @@ cdef class Orientation:
return Orientation(quaternion=theQ,symmetry=self.symmetry.lattice) #, me.conjugated(), they
def disorientation(self,other):
'''
Disorientation between myself and given other orientation
(currently needs to be of same symmetry.
look into A. Heinz and P. Neumann 1991 for cases with differing sym.)
'''
if self.symmetry != other.symmetry:
raise TypeError('disorientation between different symmetry classes not supported yet.')
misQ = self.quaternion.conjugated()*other.quaternion
for i,sA in enumerate(self.symmetry.symmetryQuats()):
for j,sB in enumerate(other.symmetry.symmetryQuats()):
theQ = sA.conjugated()*misQ*sB
for k in xrange(2):
theQ.conjugate()
hitSST = other.symmetry.inDisorientationSST(theQ)
hitFZ = self.symmetry.inFZ(theQ)
breaker = hitSST and hitFZ
if breaker: break
if breaker: break
if breaker: break
return Orientation(quaternion=theQ,symmetry=self.symmetry.lattice) # disorientation, own sym, other sym, self-->other: True, self<--other: False
def inversePole(self,axis,SST = True):
'''
axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)