more systematic names and extended docstrings
This commit is contained in:
parent
6f81f5278d
commit
b893967b68
|
@ -1024,7 +1024,7 @@ class Result:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _add_stretch_tensor(F,t):
|
def _add_stretch_tensor(F,t):
|
||||||
return {
|
return {
|
||||||
'data': (mechanics.left_stretch if t.upper() == 'V' else mechanics.right_stretch)(F['data']),
|
'data': (mechanics.stretch_left if t.upper() == 'V' else mechanics.stretch_right)(F['data']),
|
||||||
'label': f"{t}({F['label']})",
|
'label': f"{t}({F['label']})",
|
||||||
'meta': {
|
'meta': {
|
||||||
'Unit': F['meta']['Unit'],
|
'Unit': F['meta']['Unit'],
|
||||||
|
|
|
@ -5,18 +5,58 @@ from . import tensor
|
||||||
import numpy as _np
|
import numpy as _np
|
||||||
|
|
||||||
|
|
||||||
def Cauchy(P,F):
|
def Cauchy_Green_deformation_left(F):
|
||||||
"""
|
"""
|
||||||
Return Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
|
||||||
|
|
||||||
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
F : numpy.ndarray of shape (...,3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
B : numpy.ndarray of shape (...,3,3)
|
||||||
|
Left Cauchy-Green deformation tensor.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _np.matmul(F,tensor.transpose(F))
|
||||||
|
|
||||||
|
|
||||||
|
def Cauchy_Green_deformation_right(F):
|
||||||
|
"""
|
||||||
|
Calculate right Cauchy-Green deformation tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
C : numpy.ndarray of shape (...,3,3)
|
||||||
|
Right Cauchy-Green deformation tensor.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _np.matmul(tensor.transpose(F),F)
|
||||||
|
|
||||||
|
def Cauchy(P,F):
|
||||||
|
"""
|
||||||
|
Calculate the Cauchy (true) stress.
|
||||||
|
|
||||||
|
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
P : numpy.ndarray of shape (...,3,3)
|
P : numpy.ndarray of shape (...,3,3)
|
||||||
First Piola-Kirchhoff stress.
|
First Piola-Kirchhoff stress.
|
||||||
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
sigma : numpy.ndarray of shape (...,3,3)
|
||||||
|
Cauchy stress.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
|
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
|
||||||
|
@ -25,39 +65,36 @@ def Cauchy(P,F):
|
||||||
|
|
||||||
def deviatoric_part(T):
|
def deviatoric_part(T):
|
||||||
"""
|
"""
|
||||||
Return deviatoric part of a tensor.
|
Calculate deviatoric part of a tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the deviatoric part is computed.
|
Tensor of which the deviatoric part is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
T' : numpy.ndarray of shape (...,3,3)
|
||||||
|
Deviatoric part of T.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
|
return T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
|
||||||
|
|
||||||
|
|
||||||
def left_stretch(T):
|
|
||||||
"""
|
|
||||||
Return the left stretch of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
|
||||||
Tensor of which the left stretch is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return _polar_decomposition(T,'V')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def maximum_shear(T_sym):
|
def maximum_shear(T_sym):
|
||||||
"""
|
"""
|
||||||
Return the maximum shear component of a symmetric tensor.
|
Calculate the maximum shear component of a symmetric tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (...,3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the maximum shear is computed.
|
Symmetric tensor of which the maximum shear is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
gamma_max : numpy.ndarray of shape (...)
|
||||||
|
Maximum shear of T_sym.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
w = tensor.eigenvalues(T_sym)
|
w = tensor.eigenvalues(T_sym)
|
||||||
return (w[...,0] - w[...,2])*0.5
|
return (w[...,0] - w[...,2])*0.5
|
||||||
|
@ -65,33 +102,46 @@ def maximum_shear(T_sym):
|
||||||
|
|
||||||
def Mises_strain(epsilon):
|
def Mises_strain(epsilon):
|
||||||
"""
|
"""
|
||||||
Return the Mises equivalent of a strain tensor.
|
Calculate the Mises equivalent of a strain tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
epsilon : numpy.ndarray of shape (...,3,3)
|
epsilon : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
epsilon_vM : numpy.ndarray of shape (...)
|
||||||
|
Von Mises equivalent strain of epsilon.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _Mises(epsilon,2.0/3.0)
|
return _Mises(epsilon,2.0/3.0)
|
||||||
|
|
||||||
|
|
||||||
def Mises_stress(sigma):
|
def Mises_stress(sigma):
|
||||||
"""
|
"""
|
||||||
Return the Mises equivalent of a stress tensor.
|
Calculate the Mises equivalent of a stress tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
sigma : numpy.ndarray of shape (...,3,3)
|
sigma : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
sigma_vM : numpy.ndarray of shape (...)
|
||||||
|
Von Mises equivalent stress of sigma.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _Mises(sigma,3.0/2.0)
|
return _Mises(sigma,3.0/2.0)
|
||||||
|
|
||||||
|
|
||||||
def PK2(P,F):
|
def PK2(P,F):
|
||||||
"""
|
"""
|
||||||
Calculate second Piola-Kirchhoff stress from first Piola-Kirchhoff stress and deformation gradient.
|
Calculate the second Piola-Kirchhoff stress.
|
||||||
|
|
||||||
|
Resulting tensor is symmetrized as the second Piola-Kirchhoff stress
|
||||||
|
needs to be symmetric.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -100,47 +150,51 @@ def PK2(P,F):
|
||||||
F : numpy.ndarray of shape (...,3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
S : numpy.ndarray of shape (...,3,3)
|
||||||
|
Second Piola-Kirchhoff stress.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
|
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
|
||||||
return tensor.symmetric(S)
|
return tensor.symmetric(S)
|
||||||
|
|
||||||
|
|
||||||
def right_stretch(T):
|
|
||||||
"""
|
|
||||||
Return the right stretch of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
|
||||||
Tensor of which the right stretch is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return _polar_decomposition(T,'U')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def rotational_part(T):
|
def rotational_part(T):
|
||||||
"""
|
"""
|
||||||
Return the rotational part of a tensor.
|
Calculate the rotational part of a tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the rotational part is computed.
|
Tensor of which the rotational part is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
R : numpy.ndarray of shape (...,3,3)
|
||||||
|
Rotational part.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _polar_decomposition(T,'R')[0]
|
return _polar_decomposition(T,'R')[0]
|
||||||
|
|
||||||
|
|
||||||
def spherical_part(T,tensor=False):
|
def spherical_part(T,tensor=False):
|
||||||
"""
|
"""
|
||||||
Return spherical (hydrostatic) part of a tensor.
|
Calculate spherical (hydrostatic) part of a tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the hydrostatic part is computed.
|
Tensor of which the hydrostatic part is computed.
|
||||||
tensor : bool, optional
|
tensor : bool, optional
|
||||||
Map spherical part onto identity tensor. Default is false
|
Map spherical part onto identity tensor. Defaults to false
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
p : numpy.ndarray of shape (...)
|
||||||
|
unless tensor == True: shape (...,3,3)
|
||||||
|
Spherical part of tensor T, e.g. the hydrostatic part/pressure
|
||||||
|
of a stress tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
||||||
|
@ -149,7 +203,7 @@ def spherical_part(T,tensor=False):
|
||||||
|
|
||||||
def strain_tensor(F,t,m):
|
def strain_tensor(F,t,m):
|
||||||
"""
|
"""
|
||||||
Return strain tensor calculated from deformation gradient.
|
Calculate strain tensor from deformation gradient.
|
||||||
|
|
||||||
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
|
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
|
||||||
https://de.wikipedia.org/wiki/Verzerrungstensor
|
https://de.wikipedia.org/wiki/Verzerrungstensor
|
||||||
|
@ -159,17 +213,21 @@ def strain_tensor(F,t,m):
|
||||||
F : numpy.ndarray of shape (...,3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
t : {‘V’, ‘U’}
|
t : {‘V’, ‘U’}
|
||||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
Type of the polar decomposition, ‘V’ for left stretch tensor
|
||||||
|
and ‘U’ for right stretch tensor.
|
||||||
m : float
|
m : float
|
||||||
Order of the strain.
|
Order of the strain.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
epsilon : numpy.ndarray of shape (...,3,3)
|
||||||
|
Strain of F.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if t == 'V':
|
if t == 'V':
|
||||||
B = _np.matmul(F,tensor.transpose(F))
|
w,n = _np.linalg.eigh(Cauchy_Green_deformation_left(F))
|
||||||
w,n = _np.linalg.eigh(B)
|
|
||||||
elif t == 'U':
|
elif t == 'U':
|
||||||
C = _np.matmul(tensor.transpose(F),F)
|
w,n = _np.linalg.eigh(Cauchy_Green_deformation_right(F))
|
||||||
w,n = _np.linalg.eigh(C)
|
|
||||||
|
|
||||||
if m > 0.0:
|
if m > 0.0:
|
||||||
eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('...j,...kj->...jk',w**m,n))
|
eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('...j,...kj->...jk',w**m,n))
|
||||||
|
@ -184,9 +242,45 @@ def strain_tensor(F,t,m):
|
||||||
return eps
|
return eps
|
||||||
|
|
||||||
|
|
||||||
|
def stretch_left(T):
|
||||||
|
"""
|
||||||
|
Calculate left stretch of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Tensor of which the left stretch is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
V : numpy.ndarray of shape (...,3,3)
|
||||||
|
Left stretch tensor from Polar decomposition of T.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _polar_decomposition(T,'V')[0]
|
||||||
|
|
||||||
|
|
||||||
|
def stretch_right(T):
|
||||||
|
"""
|
||||||
|
Calculate right stretch of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Tensor of which the right stretch is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
U : numpy.ndarray of shape (...,3,3)
|
||||||
|
Left stretch tensor from Polar decomposition of T.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _polar_decomposition(T,'U')[0]
|
||||||
|
|
||||||
|
|
||||||
def _polar_decomposition(T,requested):
|
def _polar_decomposition(T,requested):
|
||||||
"""
|
"""
|
||||||
Singular value decomposition.
|
Perform singular value decomposition.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -197,7 +291,7 @@ def _polar_decomposition(T,requested):
|
||||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
u, s, vh = _np.linalg.svd(T)
|
u, _, vh = _np.linalg.svd(T)
|
||||||
R = _np.einsum('...ij,...jk->...ik',u,vh)
|
R = _np.einsum('...ij,...jk->...ik',u,vh)
|
||||||
|
|
||||||
output = []
|
output = []
|
||||||
|
|
|
@ -13,58 +13,75 @@ import numpy as _np
|
||||||
|
|
||||||
def symmetric(T):
|
def symmetric(T):
|
||||||
"""
|
"""
|
||||||
Return the symmetrized tensor.
|
Symmetrize tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the symmetrized values are computed.
|
Tensor of which the symmetrized values are computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
|
Symmetrized tensor T.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return (T+transpose(T))*0.5
|
return (T+transpose(T))*0.5
|
||||||
|
|
||||||
|
|
||||||
def transpose(T):
|
def transpose(T):
|
||||||
"""
|
"""
|
||||||
Return the transpose of a tensor.
|
Transpose tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the transpose is computed.
|
Tensor of which the transpose is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
T.T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Transpose of tensor T.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.swapaxes(T,axis2=-2,axis1=-1)
|
return _np.swapaxes(T,axis2=-2,axis1=-1)
|
||||||
|
|
||||||
|
|
||||||
def eigenvalues(T_sym):
|
def eigenvalues(T_sym):
|
||||||
"""
|
"""
|
||||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
Eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||||
|
|
||||||
The eigenvalues are sorted in ascending order, each repeated according to
|
|
||||||
its multiplicity.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (...,3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the eigenvalues are computed.
|
Symmetric tensor of which the eigenvalues are computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
lambda : numpy.ndarray of shape (...,3)
|
||||||
|
Eigenvalues of T_sym sorted in ascending order, each repeated
|
||||||
|
according to its multiplicity.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.linalg.eigvalsh(symmetric(T_sym))
|
return _np.linalg.eigvalsh(symmetric(T_sym))
|
||||||
|
|
||||||
|
|
||||||
def eigenvectors(T_sym,RHS=False):
|
def eigenvectors(T_sym,RHS=False):
|
||||||
"""
|
"""
|
||||||
Return eigenvectors of a symmetric tensor.
|
Eigenvectors of a symmetric tensor.
|
||||||
|
|
||||||
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (...,3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the eigenvectors are computed.
|
Symmetric tensor of which the eigenvectors are computed.
|
||||||
RHS: bool, optional
|
RHS: bool, optional
|
||||||
Enforce right-handed coordinate system. Default is False.
|
Enforce right-handed coordinate system. Defaults to False.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
x : numpy.ndarray of shape (...,3,3)
|
||||||
|
Eigenvectors of T_sym sorted in ascending order of their
|
||||||
|
associated eigenvalues.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
(u,v) = _np.linalg.eigh(symmetric(T_sym))
|
(u,v) = _np.linalg.eigh(symmetric(T_sym))
|
||||||
|
|
|
@ -292,7 +292,7 @@ class TestResult:
|
||||||
default.add_stretch_tensor('F','U')
|
default.add_stretch_tensor('F','U')
|
||||||
loc = {'F': default.get_dataset_location('F'),
|
loc = {'F': default.get_dataset_location('F'),
|
||||||
'U(F)': default.get_dataset_location('U(F)')}
|
'U(F)': default.get_dataset_location('U(F)')}
|
||||||
in_memory = mechanics.right_stretch(default.read_dataset(loc['F'],0))
|
in_memory = mechanics.stretch_right(default.read_dataset(loc['F'],0))
|
||||||
in_file = default.read_dataset(loc['U(F)'],0)
|
in_file = default.read_dataset(loc['U(F)'],0)
|
||||||
assert np.allclose(in_memory,in_file)
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
|
@ -300,7 +300,7 @@ class TestResult:
|
||||||
default.add_stretch_tensor('F','V')
|
default.add_stretch_tensor('F','V')
|
||||||
loc = {'F': default.get_dataset_location('F'),
|
loc = {'F': default.get_dataset_location('F'),
|
||||||
'V(F)': default.get_dataset_location('V(F)')}
|
'V(F)': default.get_dataset_location('V(F)')}
|
||||||
in_memory = mechanics.left_stretch(default.read_dataset(loc['F'],0))
|
in_memory = mechanics.stretch_left(default.read_dataset(loc['F'],0))
|
||||||
in_file = default.read_dataset(loc['V(F)'],0)
|
in_file = default.read_dataset(loc['V(F)'],0)
|
||||||
assert np.allclose(in_memory,in_file)
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
|
|
|
@ -17,10 +17,6 @@ def eigenvalues(T_sym):
|
||||||
return np.linalg.eigvalsh(symmetric(T_sym))
|
return np.linalg.eigvalsh(symmetric(T_sym))
|
||||||
|
|
||||||
|
|
||||||
def left_stretch(T):
|
|
||||||
return polar_decomposition(T,'V')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def maximum_shear(T_sym):
|
def maximum_shear(T_sym):
|
||||||
w = eigenvalues(T_sym)
|
w = eigenvalues(T_sym)
|
||||||
return (w[0] - w[2])*0.5
|
return (w[0] - w[2])*0.5
|
||||||
|
@ -39,10 +35,6 @@ def PK2(P,F):
|
||||||
return symmetric(S)
|
return symmetric(S)
|
||||||
|
|
||||||
|
|
||||||
def right_stretch(T):
|
|
||||||
return polar_decomposition(T,'U')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def rotational_part(T):
|
def rotational_part(T):
|
||||||
return polar_decomposition(T,'R')[0]
|
return polar_decomposition(T,'R')[0]
|
||||||
|
|
||||||
|
@ -73,6 +65,14 @@ def strain_tensor(F,t,m):
|
||||||
return eps
|
return eps
|
||||||
|
|
||||||
|
|
||||||
|
def stretch_left(T):
|
||||||
|
return polar_decomposition(T,'V')[0]
|
||||||
|
|
||||||
|
|
||||||
|
def stretch_right(T):
|
||||||
|
return polar_decomposition(T,'U')[0]
|
||||||
|
|
||||||
|
|
||||||
def symmetric(T):
|
def symmetric(T):
|
||||||
return (T+T.T)*0.5
|
return (T+T.T)*0.5
|
||||||
|
|
||||||
|
@ -113,13 +113,13 @@ class TestMechanics:
|
||||||
assert np.allclose(single(test_data_flat[i]),v)
|
assert np.allclose(single(test_data_flat[i]),v)
|
||||||
|
|
||||||
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
|
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
|
||||||
(mechanics.left_stretch , left_stretch ),
|
|
||||||
(mechanics.maximum_shear , maximum_shear ),
|
(mechanics.maximum_shear , maximum_shear ),
|
||||||
(mechanics.Mises_strain , Mises_strain ),
|
(mechanics.Mises_strain , Mises_strain ),
|
||||||
(mechanics.Mises_stress , Mises_stress ),
|
(mechanics.Mises_stress , Mises_stress ),
|
||||||
(mechanics.right_stretch , right_stretch ),
|
|
||||||
(mechanics.rotational_part, rotational_part),
|
(mechanics.rotational_part, rotational_part),
|
||||||
(mechanics.spherical_part , spherical_part ),
|
(mechanics.spherical_part , spherical_part ),
|
||||||
|
(mechanics.stretch_left , stretch_left ),
|
||||||
|
(mechanics.stretch_right , stretch_right ),
|
||||||
])
|
])
|
||||||
def test_vectorize_1_arg(self,vectorized,single):
|
def test_vectorize_1_arg(self,vectorized,single):
|
||||||
epsilon = np.random.rand(self.n,3,3)
|
epsilon = np.random.rand(self.n,3,3)
|
||||||
|
@ -166,8 +166,8 @@ class TestMechanics:
|
||||||
"""F = RU = VR."""
|
"""F = RU = VR."""
|
||||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
|
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
|
||||||
R = mechanics.rotational_part(F)
|
R = mechanics.rotational_part(F)
|
||||||
V = mechanics.left_stretch(F)
|
V = mechanics.stretch_left(F)
|
||||||
U = mechanics.right_stretch(F)
|
U = mechanics.stretch_right(F)
|
||||||
assert np.allclose(np.matmul(R,U),
|
assert np.allclose(np.matmul(R,U),
|
||||||
np.matmul(V,R))
|
np.matmul(V,R))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue