implemented ideas from discussion with Philip
group matching unified and with wildcard support time step handling should become more convenient (WIP) add_norm can not compute abs of scalar, added function for that general polishing here and there
This commit is contained in:
parent
c13db4b3ca
commit
b85ac11c49
|
@ -24,9 +24,9 @@ parser.add_argument('filenames', nargs='+',
|
||||||
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
||||||
help='name of subdirectory to hold output')
|
help='name of subdirectory to hold output')
|
||||||
parser.add_argument('--mat', nargs='+',
|
parser.add_argument('--mat', nargs='+',
|
||||||
help='labels for materialpoint/homogenization',dest='mat')
|
help='labels for materialpoint',dest='mat')
|
||||||
parser.add_argument('--con', nargs='+',
|
parser.add_argument('--con', nargs='+',
|
||||||
help='labels for constituent/crystallite/constitutive',dest='con')
|
help='labels for constituent',dest='con')
|
||||||
|
|
||||||
options = parser.parse_args()
|
options = parser.parse_args()
|
||||||
|
|
||||||
|
@ -67,11 +67,9 @@ for filename in options.filenames:
|
||||||
x = results.get_dataset_location(label)
|
x = results.get_dataset_location(label)
|
||||||
if len(x) == 0:
|
if len(x) == 0:
|
||||||
continue
|
continue
|
||||||
label = x[0].split('/')[-1]
|
|
||||||
array = results.read_dataset(x,0)
|
array = results.read_dataset(x,0)
|
||||||
d = int(np.product(np.shape(array)[1:]))
|
d = int(np.product(np.shape(array)[1:]))
|
||||||
array = np.reshape(array,[np.product(results.grid),d])
|
data = np.concatenate((data,np.reshape(array,[np.product(results.grid),d])),1)
|
||||||
data = np.concatenate((data,array),1)
|
|
||||||
|
|
||||||
if d>1:
|
if d>1:
|
||||||
header+= ''.join([' {}_{}'.format(j+1,label) for j in range(d)])
|
header+= ''.join([' {}_{}'.format(j+1,label) for j in range(d)])
|
||||||
|
@ -84,11 +82,9 @@ for filename in options.filenames:
|
||||||
x = results.get_dataset_location(label)
|
x = results.get_dataset_location(label)
|
||||||
if len(x) == 0:
|
if len(x) == 0:
|
||||||
continue
|
continue
|
||||||
label = x[0].split('/')[-1]
|
|
||||||
array = results.read_dataset(x,0)
|
array = results.read_dataset(x,0)
|
||||||
d = int(np.product(np.shape(array)[1:]))
|
d = int(np.product(np.shape(array)[1:]))
|
||||||
array = np.reshape(array,[np.product(results.grid),d])
|
data = np.concatenate((data,np.reshape(array,[np.product(results.grid),d])),1)
|
||||||
data = np.concatenate((data,array),1)
|
|
||||||
|
|
||||||
if d>1:
|
if d>1:
|
||||||
header+= ''.join([' {}_{}'.format(j+1,label) for j in range(d)])
|
header+= ''.join([' {}_{}'.format(j+1,label) for j in range(d)])
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
from queue import Queue
|
from queue import Queue
|
||||||
import re
|
import re
|
||||||
|
import glob
|
||||||
|
|
||||||
import h5py
|
import h5py
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -37,10 +38,12 @@ class DADF5():
|
||||||
self.size = f['geometry'].attrs['size']
|
self.size = f['geometry'].attrs['size']
|
||||||
|
|
||||||
r=re.compile('inc[0-9]+')
|
r=re.compile('inc[0-9]+')
|
||||||
self.increments = [{'inc': int(u[3:]),
|
self.time_information = [{'inc': int(u[3:]),
|
||||||
'time': round(f[u].attrs['time/s'],12),
|
'time': round(f[u].attrs['time/s'],12),
|
||||||
} for u in f.keys() if r.match(u)]
|
} for u in f.keys() if r.match(u)]
|
||||||
|
|
||||||
|
self.increments = self.time_information.copy() # unify later
|
||||||
|
|
||||||
self.Nmaterialpoints, self.Nconstituents = np.shape(f['mapping/cellResults/constituent'])
|
self.Nmaterialpoints, self.Nconstituents = np.shape(f['mapping/cellResults/constituent'])
|
||||||
self.materialpoints = [m.decode() for m in np.unique(f['mapping/cellResults/materialpoint']['Name'])]
|
self.materialpoints = [m.decode() for m in np.unique(f['mapping/cellResults/materialpoint']['Name'])]
|
||||||
self.constituents = [c.decode() for c in np.unique(f['mapping/cellResults/constituent'] ['Name'])]
|
self.constituents = [c.decode() for c in np.unique(f['mapping/cellResults/constituent'] ['Name'])]
|
||||||
|
@ -58,7 +61,7 @@ class DADF5():
|
||||||
self.m_output_types.append(o)
|
self.m_output_types.append(o)
|
||||||
self.m_output_types = list(set(self.m_output_types)) # make unique
|
self.m_output_types = list(set(self.m_output_types)) # make unique
|
||||||
|
|
||||||
self.visible= {'increments': self.increments, # ToDo:simplify, activity only positions that translate into (no complex types)
|
self.visible= {'increments': self.increments, # ToDo:simplify, activity only positions that translate into (no complex types)
|
||||||
'constituents': self.constituents,
|
'constituents': self.constituents,
|
||||||
'materialpoints': self.materialpoints,
|
'materialpoints': self.materialpoints,
|
||||||
'constituent': range(self.Nconstituents), # ToDo: stupid naming
|
'constituent': range(self.Nconstituents), # ToDo: stupid naming
|
||||||
|
@ -99,6 +102,23 @@ class DADF5():
|
||||||
self.__visible_set(a,t,a)
|
self.__visible_set(a,t,a)
|
||||||
|
|
||||||
|
|
||||||
|
def increment_set_by_time(self,start,end):
|
||||||
|
for t in self.time_information:
|
||||||
|
if start<= t['time']< end:
|
||||||
|
print(t)
|
||||||
|
|
||||||
|
|
||||||
|
def increment_set_by_position(self,start,end):
|
||||||
|
for t in self.time_information[start:end]:
|
||||||
|
print(t)
|
||||||
|
|
||||||
|
|
||||||
|
def increment_set(self,start,end):
|
||||||
|
for t in self.time_information:
|
||||||
|
if start<= t['inc']< end:
|
||||||
|
print(t)
|
||||||
|
|
||||||
|
|
||||||
def constituent_output_iter(self):
|
def constituent_output_iter(self):
|
||||||
return self.__visible_iter('c_output_types')
|
return self.__visible_iter('c_output_types')
|
||||||
|
|
||||||
|
@ -167,37 +187,58 @@ class DADF5():
|
||||||
# ToDo: store increments, select icrements (trivial), position, and time
|
# ToDo: store increments, select icrements (trivial), position, and time
|
||||||
|
|
||||||
|
|
||||||
|
def groups_with_datasets(self,datasets):
|
||||||
def get_groups(self,l): #group_with_data(datasets)
|
|
||||||
"""
|
"""
|
||||||
Get groups that contain all requested datasets.
|
Get groups that contain all requested datasets.
|
||||||
|
|
||||||
|
Only groups within inc?????/constituent/*_*/* inc?????/materialpoint/*_*/*
|
||||||
|
are considered as they contain the data.
|
||||||
|
Single strings will be treated as list with one entry.
|
||||||
|
|
||||||
|
Wild card matching is allowed, but the number of arguments need to fit.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
l : list of str
|
datasets : iterable or str or boolean
|
||||||
Names of datasets that need to be located in the group.
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
datasets = False matches no group
|
||||||
|
datasets = True matches all groups
|
||||||
|
datasets = ['F','P'] matches a group with ['F','P','sigma']
|
||||||
|
datasets = ['*','P'] matches a group with ['F','P','sigma']
|
||||||
|
datasets = ['*'] does not matche a group with ['F','P','sigma']
|
||||||
|
datasets = ['*','*'] does not matche a group with ['F','P','sigma']
|
||||||
|
datasets = ['*','*','*'] matches a group with ['F','P','sigma']
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
if datasets is False: return []
|
||||||
|
if isinstance(datasets,str):
|
||||||
|
s = [datasets]
|
||||||
|
else:
|
||||||
|
s = datasets
|
||||||
|
|
||||||
groups = []
|
groups = []
|
||||||
if type(l) is not list:
|
|
||||||
raise TypeError('Candidates should be given as a list')
|
|
||||||
with h5py.File(self.filename,'r') as f:
|
with h5py.File(self.filename,'r') as f:
|
||||||
for g in self.get_active_groups():
|
for i in self.visible['increments']:
|
||||||
if set(l).issubset(f[g].keys()): groups.append(g)
|
group_inc = 'inc{:05}'.format(i['inc']) #ToDo: Merge path only once at the end '/'.join(listE)
|
||||||
return groups
|
for c in self.constituent_iter():
|
||||||
|
for t in self.constituent_output_iter():
|
||||||
|
group = '/'.join([group_inc,'constituent',c,t])
|
||||||
def get_active_groups(self): # rename: get_groups needed? merge with datasets and have [] and ['*']
|
if datasets is True:
|
||||||
"""Get groups that are currently considered for evaluation."""
|
groups.append(group)
|
||||||
groups = []
|
else:
|
||||||
for i in self.visible['increments']:
|
match = [e for e_ in [glob.fnmatch.filter(f[group].keys(),s) for s in datasets] for e in e_]
|
||||||
group_inc = 'inc{:05}'.format(i['inc']) #ToDo: Merge path only once at the end '/'.join(listE)
|
if len(set(match)) == len(s) : groups.append(group)
|
||||||
for c in self.visible['constituents']:
|
for m in self.materialpoint_iter():
|
||||||
for t in self.visible['c_output_types']:
|
for t in self.materialpoint_output_iter():
|
||||||
groups.append('/'.join([group_inc,'constituent',c,t]))
|
group = '/'.join([group_inc,'materialpoint',m,t])
|
||||||
for m in self.visible['materialpoints']:
|
if datasets is True:
|
||||||
for t in self.visible['m_output_types']:
|
groups.append(group)
|
||||||
groups.append('/'.join([group_inc,'materialpoint',m,t]))
|
else:
|
||||||
|
match = [e for e_ in [glob.fnmatch.filter(f[group].keys(),s) for s in datasets] for e in e_]
|
||||||
|
if len(set(match)) == len(s) : groups.append(group)
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
|
|
||||||
|
@ -316,14 +357,17 @@ class DADF5():
|
||||||
|
|
||||||
def add_Mises(self,x):
|
def add_Mises(self,x):
|
||||||
"""Adds the equivalent Mises stress or strain of a tensor."""
|
"""Adds the equivalent Mises stress or strain of a tensor."""
|
||||||
def deviator(x):
|
def Mises(x):
|
||||||
|
|
||||||
if x['meta']['Unit'] == 'Pa': #ToDo: Should we use this? Then add_Cauchy and add_strain_tensors also should perform sanity checks
|
if x['meta']['Unit'] == b'Pa': #ToDo: Should we use this? Then add_Cauchy and add_strain_tensors also should perform sanity checks
|
||||||
factor = 3.0/2.0
|
factor = 3.0/2.0
|
||||||
elif x['meta']['Unit'] == '-':
|
t = 'stress'
|
||||||
|
elif x['meta']['Unit'] == b'1':
|
||||||
factor = 2.0/3.0
|
factor = 2.0/3.0
|
||||||
|
t = 'strain'
|
||||||
else:
|
else:
|
||||||
ValueError
|
print(x['meta']['Unit'])
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
d = x['data']
|
d = x['data']
|
||||||
dev = d - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[d.shape[0],3,3]),np.trace(d,axis1=1,axis2=2)/3.0)
|
dev = d - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[d.shape[0],3,3]),np.trace(d,axis1=1,axis2=2)/3.0)
|
||||||
|
@ -331,35 +375,29 @@ class DADF5():
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'data' : np.sqrt(np.einsum('ijk->i',dev**2)*factor),
|
'data' : np.sqrt(np.einsum('ijk->i',dev**2)*factor),
|
||||||
'label' : 'Mises({})'.format(x['label']),
|
'label' : '{}_vM'.format(x['label']),
|
||||||
'meta' : {
|
'meta' : {
|
||||||
'Unit' : x['meta']['Unit'],
|
'Unit' : x['meta']['Unit'],
|
||||||
'Description' : 'Mises equivalent stress of {} ({})'.format(x['label'],x['meta']['Description']),
|
'Description' : 'Mises equivalent {} of {} ({})'.format(t,x['label'],x['meta']['Description']),
|
||||||
'Creator' : 'dadf5.py:add_Mises_stress vXXXXX'
|
'Creator' : 'dadf5.py:add_Mises_stress vXXXXX'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
requested = [{'label':x,'arg':'x'}]
|
requested = [{'label':x,'arg':'x'}]
|
||||||
|
|
||||||
self.__add_generic_pointwise(deviator,requested)
|
self.__add_generic_pointwise(Mises,requested)
|
||||||
|
|
||||||
|
|
||||||
def add_norm(self,x,ord=None):
|
def add_norm(self,x,ord=None):
|
||||||
"""
|
"""
|
||||||
Adds norm of vector or tensor or magnitude of a scalar.
|
Adds norm of vector or tensor.
|
||||||
|
|
||||||
See numpy.linalg.norm manual for details.
|
See numpy.linalg.norm manual for details.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def norm(x,ord):
|
def norm(x,ord):
|
||||||
|
|
||||||
o = ord
|
o = ord
|
||||||
if len(x['data'].shape) == 1:
|
if len(x['data'].shape) == 2:
|
||||||
axis = 0
|
|
||||||
t = 'scalar'
|
|
||||||
if o is None: o = 2
|
|
||||||
elif len(x['data'].shape) == 2:
|
|
||||||
axis = 1
|
axis = 1
|
||||||
t = 'vector'
|
t = 'vector'
|
||||||
if o is None: o = 2
|
if o is None: o = 2
|
||||||
|
@ -372,7 +410,7 @@ class DADF5():
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'data' : np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
'data' : np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
||||||
'label' : '|{}|_{}'.format(x['label'],ord),
|
'label' : '|{}|_{}'.format(x['label'],o),
|
||||||
'meta' : {
|
'meta' : {
|
||||||
'Unit' : x['meta']['Unit'],
|
'Unit' : x['meta']['Unit'],
|
||||||
'Description' : '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
'Description' : '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
||||||
|
@ -385,6 +423,25 @@ class DADF5():
|
||||||
self.__add_generic_pointwise(norm,requested,{'ord':ord})
|
self.__add_generic_pointwise(norm,requested,{'ord':ord})
|
||||||
|
|
||||||
|
|
||||||
|
def add_absolute(self,x):
|
||||||
|
"""Adds absolute value."""
|
||||||
|
def absolute(x):
|
||||||
|
|
||||||
|
return {
|
||||||
|
'data' : np.abs(x['data']),
|
||||||
|
'label' : '|{}|'.format(x['label']),
|
||||||
|
'meta' : {
|
||||||
|
'Unit' : x['meta']['Unit'],
|
||||||
|
'Description' : 'Absolute value of {} ({})'.format(x['label'],x['meta']['Description']),
|
||||||
|
'Creator' : 'dadf5.py:add_abs vXXXXX'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
requested = [{'label':x,'arg':'x'}]
|
||||||
|
|
||||||
|
self.__add_generic_pointwise(absolute,requested)
|
||||||
|
|
||||||
|
|
||||||
def add_determinant(self,x):
|
def add_determinant(self,x):
|
||||||
"""Adds the determinant component of a tensor."""
|
"""Adds the determinant component of a tensor."""
|
||||||
def determinant(x):
|
def determinant(x):
|
||||||
|
@ -516,7 +573,7 @@ class DADF5():
|
||||||
|
|
||||||
todo = []
|
todo = []
|
||||||
# ToDo: It would be more memory efficient to read only from file when required, i.e. do to it in pool.add_task
|
# ToDo: It would be more memory efficient to read only from file when required, i.e. do to it in pool.add_task
|
||||||
for group in self.get_groups([d['label'] for d in datasets_requested]):
|
for group in self.groups_with_datasets([d['label'] for d in datasets_requested]):
|
||||||
with h5py.File(self.filename,'r') as f:
|
with h5py.File(self.filename,'r') as f:
|
||||||
datasets_in = {}
|
datasets_in = {}
|
||||||
for d in datasets_requested:
|
for d in datasets_requested:
|
||||||
|
|
Loading…
Reference in New Issue