restored orientation averaging capability
This commit is contained in:
parent
598e8034b4
commit
b8285d5749
|
@ -35,14 +35,6 @@ class Quaternion:
|
|||
"""Components"""
|
||||
return iter(self.asList())
|
||||
|
||||
def asArray(self):
|
||||
"""As numpy array"""
|
||||
return np.array((self.q,self.p[0],self.p[1],self.p[2]))
|
||||
|
||||
def asList(self):
|
||||
return [self.q]+list(self.p)
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Readable string"""
|
||||
return 'Quaternion: (real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(q=self.q,p=self.p)
|
||||
|
@ -180,6 +172,17 @@ class Quaternion:
|
|||
return not self.__eq__(other)
|
||||
|
||||
|
||||
def asM(self):
|
||||
"""Intermediate representation useful for quaternion averaging (see F. Landis Markley et al.)"""
|
||||
return np.outer(self.asArray(),self.asArray())
|
||||
|
||||
def asArray(self):
|
||||
"""As numpy array"""
|
||||
return np.array((self.q,self.p[0],self.p[1],self.p[2]))
|
||||
|
||||
def asList(self):
|
||||
return [self.q]+list(self.p)
|
||||
|
||||
def normalize(self):
|
||||
d = self.magnitude()
|
||||
if d > 0.0:
|
||||
|
@ -294,6 +297,10 @@ class Rotation:
|
|||
def asCubochoric(self):
|
||||
return qu2cu(self.quaternion.asArray())
|
||||
|
||||
def asM(self):
|
||||
"""Intermediate representation useful fro quaternion averaging (see F. Landis Markley et al.)"""
|
||||
return self.quaternion.asM()
|
||||
|
||||
|
||||
################################################################################################
|
||||
# static constructors. The input data needs to follow the convention, options allow to
|
||||
|
@ -503,7 +510,7 @@ class Symmetry:
|
|||
otherOrder = Symmetry.lattices.index(other.lattice)
|
||||
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
||||
|
||||
def symmetryOperations(self):
|
||||
def symmetryOperations(self,who=[]):
|
||||
"""List of symmetry operations as quaternions."""
|
||||
if self.lattice == 'cubic':
|
||||
symQuats = [
|
||||
|
@ -570,7 +577,8 @@ class Symmetry:
|
|||
[ 1.0,0.0,0.0,0.0 ],
|
||||
]
|
||||
|
||||
return [Rotation(q) for q in symQuats]
|
||||
return list(map(Rotation,
|
||||
np.array(symQuats)[np.atleast_1d(np.array(who)) if who != [] else range(len(symQuats))]))
|
||||
|
||||
|
||||
def inFZ(self,R):
|
||||
|
@ -579,6 +587,8 @@ class Symmetry:
|
|||
|
||||
Fundamental zone in Rodrigues space is point symmetric around origin.
|
||||
"""
|
||||
if np.any(R == np.inf): return False
|
||||
|
||||
Rabs = abs(R[0:3]*R[3])
|
||||
|
||||
if self.lattice == 'cubic':
|
||||
|
@ -1050,7 +1060,8 @@ class Orientation:
|
|||
|
||||
def disorientation(self,
|
||||
other,
|
||||
SST = True):
|
||||
SST = True,
|
||||
symmetries = False):
|
||||
"""
|
||||
Disorientation between myself and given other orientation.
|
||||
|
||||
|
@ -1076,15 +1087,18 @@ class Orientation:
|
|||
if breaker: break
|
||||
if breaker: break
|
||||
|
||||
return r
|
||||
return (r, i,j, k == 1) if symmetries else r # disorientation ...
|
||||
# ... own sym, other sym,
|
||||
# self-->other: True, self<--other: False
|
||||
|
||||
|
||||
def inFZ(self):
|
||||
return self.lattice.symmetry.inFZ(self.rotation.asRodrigues())
|
||||
|
||||
def equivalentOrientations(self):
|
||||
def equivalentOrientations(self, who=[]):
|
||||
"""List of orientations which are symmetrically equivalent"""
|
||||
return [self.__class__(q*self.rotation,self.lattice) \
|
||||
for q in self.lattice.symmetry.symmetryOperations()]
|
||||
for q in self.lattice.symmetry.symmetryOperations(who)]
|
||||
|
||||
def relatedOrientations(self,model):
|
||||
"""List of orientations related by the given orientation relationship"""
|
||||
|
@ -1125,37 +1139,39 @@ class Orientation:
|
|||
return color
|
||||
|
||||
|
||||
# @classmethod
|
||||
# def average(cls,
|
||||
# orientations,
|
||||
# multiplicity = []):
|
||||
# """
|
||||
# Average orientation
|
||||
@classmethod
|
||||
def average(cls,
|
||||
orientations,
|
||||
multiplicity = []):
|
||||
"""
|
||||
Average orientation
|
||||
|
||||
# ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
|
||||
# Averaging Quaternions,
|
||||
# Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
|
||||
# doi: 10.2514/1.28949
|
||||
# usage:
|
||||
# a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal')
|
||||
# b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal')
|
||||
# avg = Orientation.average([a,b])
|
||||
# """
|
||||
# if not all(isinstance(item, Orientation) for item in orientations):
|
||||
# raise TypeError("Only instances of Orientation can be averaged.")
|
||||
ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
|
||||
Averaging Quaternions,
|
||||
Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
|
||||
doi: 10.2514/1.28949
|
||||
usage:
|
||||
a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal')
|
||||
b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal')
|
||||
avg = Orientation.average([a,b])
|
||||
"""
|
||||
if not all(isinstance(item, Orientation) for item in orientations):
|
||||
print('got a list of {}'.format(orientations))
|
||||
raise TypeError("Only instances of Orientation can be averaged.")
|
||||
|
||||
# N = len(orientations)
|
||||
# if multiplicity == [] or not multiplicity:
|
||||
# multiplicity = np.ones(N,dtype='i')
|
||||
N = len(orientations)
|
||||
if multiplicity == [] or not multiplicity:
|
||||
multiplicity = np.ones(N,dtype='i')
|
||||
|
||||
# reference = orientations[0] # take first as reference
|
||||
# for i,(o,n) in enumerate(zip(orientations,multiplicity)):
|
||||
# closest = o.equivalentOrientations(reference.disorientation(o,SST = False)[2])[0] # select sym orientation with lowest misorientation
|
||||
# M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
||||
# eig, vec = np.linalg.eig(M/N)
|
||||
ref = orientations[0] # take first as reference
|
||||
for i,(o,n) in enumerate(zip(orientations,multiplicity)):
|
||||
closest = o.equivalentOrientations(ref.disorientation(o,SST=False,symmetries=True)[2])[0] # select sym orientation with lowest misorientation
|
||||
M = closest.rotation.asM() * n if i == 0 \
|
||||
else M + closest.rotation.asM() * n # noqa add (multiples) of this orientation to average noqa
|
||||
eig, vec = np.linalg.eig(M/N)
|
||||
|
||||
# return Orientation(quaternion = Quaternion(quat = np.real(vec.T[eig.argmax()])),
|
||||
# symmetry = reference.symmetry.lattice)
|
||||
return Orientation(Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True),
|
||||
ref.lattice)
|
||||
|
||||
|
||||
####################################################################################################
|
||||
|
|
Loading…
Reference in New Issue