all the criteria support plane stress

This commit is contained in:
Haiming Zhang 2015-04-08 16:24:20 +00:00
parent 0544706c7b
commit b77768fd4d
1 changed files with 245 additions and 228 deletions

View File

@ -44,28 +44,32 @@ def principalStress(p):
I1s3I2= (I1**2 - 3.0*I2)**0.5
numer = 2.0*I1**3 - 9.0*I1*I2 + 27.0*I3
denom = I1s3I2**(-3.0)
cs = 0.5*numer*denom
denom = 0.5*I1s3I2**(-3.0)
cs = numer*denom
phi = np.arccos(cs)/3.0
t1 = I1/3.0; t2 = 2.0/3.0*I1s3I2
return np.array( [t1 + t2*cos(phi), t1+t2*cos(phi+np.pi*2.0/3.0), t1+t2*cos(phi+np.pi*4.0/3.0)])
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), Karafillis=False):
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
'''
The derivative of principal stress with respect to stress
'''
sin = np.sin; cos = np.cos
I1,I2,I3 = invariant(p)
third = 1.0/3.0
I1s3I2= (I1**2 - 3.0*I2)**0.5
numer = 2.0*I1**3 - 9.0*I1*I2 + 27.0*I3
denom = I1s3I2**(-3.0)
cs = 0.5*numer*denom
denom = 0.5*I1s3I2**(-3.0)
cs = numer*denom
phi = np.arccos(cs)*third
dphidcs = -third/np.sqrt(1.0 - cs**2)
dcsddenom = 0.5*numer*(-1.5)*I1s3I2**(-5.0)
dcsdI1 = 0.5*(6.0*I1**2 - 9.0*I2)*denom + dcsddenom*(2.0*I1)
dcsdI2 = 0.5*( - 9.0*I1)*denom + dcsddenom*(-3.0)
dcsdI3 = 13.5*denom
dcsdI1 = (6.0*I1**2 - 9.0*I2)*denom + dcsddenom*(2.0*I1)
dcsdI2 = ( - 9.0*I1)*denom + dcsddenom*(-3.0)
dcsdI3 = 27.0*denom
dphidI1, dphidI2, dphidI3 = dphidcs*dcsdI1, dphidcs*dcsdI2, dphidcs*dcsdI3
dI1s3I2dI1= I1/I1s3I2; dI1s3I2dI2 = -1.5/I1s3I2
@ -77,21 +81,28 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), Karafillis=False):
dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3
# calculate the derivation of principal stress with regards to the anisotropic coefficients
one = np.ones_like(s1); zero = np.zeros_like(s1); dim = len(s1)
one = np.ones_like(s1); zero = np.zeros_like(s1); num = len(s1)
dIdp = np.array([[one, one, one, zero, zero, zero],
[p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]],
[p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2,
-2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ])
if Karafillis:
dpdc = np.array([[zero,s2-s3,s3-s2], [s1-s3,zero,s3-s1], [s1-s2,s2-s1,zero]])
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(dim)]).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i].T).T/3.0 for i in xrange(dim)]).T,
np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(dim,3,3).T), axis=1)
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(num)]).T
if dim == 2: temp = np.vstack([dSdp[:,3]*s4]).T.reshape(num,1,3).T
else: temp = np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(num,3,3).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i].T).T/3.0 for i in xrange(num)]).T,
temp), axis=1)
else:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3,
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3,
dIdp[i,3]*s4, dIdp[i,4]*s5, dIdp[i,5]*s6 ] for i in xrange(3)])
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(dim)]).T
if dim == 2:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3,
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3,
dIdp[i,3]*s4 ] for i in xrange(3)])
else:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3,
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3,
dIdp[i,3]*s4, dIdp[i,4]*s5, dIdp[i,5]*s6 ] for i in xrange(3)])
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(num)]).T
def invariant(sigmas):
s11,s22,s33,s12,s23,s31 = sigmas
@ -132,18 +143,19 @@ class Criteria(object):
'''
residuum of anisotropic Barlat 1991 yield criterion (eq. 2.37)
'''
def __init__(self, criterion, uniaxialStress,exponent):
def __init__(self, criterion, uniaxialStress,exponent, dimension):
self.stress0 = uniaxialStress
if exponent < 0.0:
if exponent < 0.0: # The exponent m is undetermined
self.mFix = [False, exponent]
else:
else: # The exponent m is fixed
self.mFix = [True, exponent]
self.func = fitCriteria[criterion]['func']
self.criteria = criterion
self.dim = dimension
def fun(self, paras, ydata, sigmas):
return self.func(self.stress0, paras, sigmas,self.mFix,self.criteria)
return self.func(self.stress0, paras, sigmas,self.mFix,self.criteria,self.dim)
def jac(self, paras, ydata, sigmas):
return self.func(self.stress0, paras, sigmas,self.mFix,self.criteria,Jac=True)
return self.func(self.stress0, paras, sigmas,self.mFix,self.criteria,self.dim,Jac=True)
class Vegter(object):
'''
@ -232,11 +244,11 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
vegter = Vegter(refPts, refNormals)
def Tresca(eqStress, paras, sigmas, mFix, criteria, Jac = False):
def Tresca(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Tresca yield criterion
the fitted parameters is: paras(sigma0)
eqStress, mFix, criteria are invalid input
eqStress, mFix, criteria, dim are invalid input
'''
if not Jac:
lambdas = principalStresses(sigmas)
@ -247,7 +259,7 @@ def Tresca(eqStress, paras, sigmas, mFix, criteria, Jac = False):
else:
return -np.ones(len(sigmas))
def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, Jac = False):
def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Cazacu-Barlat (CB) yield criterion
the fitted parameters are:
@ -294,7 +306,7 @@ def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, Jac = False):
df = r/f0/108.0
return np.vstack((df*3.0*J20**2.0*dJ2da, -df*2.0*J30*c*dJ3db, -df*J30**2)).T
def Drucker(eqStress, paras, sigmas, mFix, criteria, Jac = False):
def Drucker(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Drucker yield criterion
the fitted parameters are
@ -334,20 +346,25 @@ def Drucker(eqStress, paras, sigmas, mFix, criteria, Jac = False):
if mFix[0]: return np.vstack((-r/sigma0, -drdl*J3_2p)).T
else: return np.vstack((-r/sigma0, -drdl*J3_2p, jp)).T
def Hill1948(eqStress, paras, sigmas, mFix, criteria, Jac = False):
def Hill1948(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Hill 1948 yield criterion
the fitted parameters are F, G, H, L, M, N
the fitted parameters are:
F, G, H, L, M, N for 3D
F, G, H, N for 2D
eqStress, mFix, criteria are invalid input
'''
s11,s22,s33,s12,s23,s31 = sigmas
jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2])
if dim == 2: # plane stress
jac = np.array([ s22**2, s11**2, (s11-s22)**2, 2.0*s12**2])
else: # general case
jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2])
if not Jac:
return (np.dot(paras,jac)/2.0-0.5).ravel()
else:
return jac.T
def Hill1979(eqStress,paras, sigmas, mFix, criteria, Jac = False):
def Hill1979(eqStress,paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Hill 1979 yield criterion
the fitted parameters are: f,g,h,a,b,c,m
@ -362,20 +379,19 @@ def Hill1979(eqStress,paras, sigmas, mFix, criteria, Jac = False):
diffs = np.array([s2-s3, s3-s1, s1-s2, 2.0*s1-s2-s3, 2.0*s2-s3-s1, 2.0*s3-s1-s2])**2
#diffs = np.array([s[1]-s[2], s[2]-s[0], etc ... s1-s2, 2.0*s1-s2-s3, 2.0*s2-s3-s1, 2.0*s3-s1-s2])**2
diffsm = diffs**(m/2.0)
base = np.dot(coeff,diffsm)
r = base**(1.0/m)/eqStress #left = base**mi
left = np.dot(coeff,diffsm)
r = (0.5*left)**(1.0/m)/eqStress #left = base**mi
if not Jac:
return (r-1.0).ravel()
else:
drdb = r/base/m
dbdm = np.dot(coeff,diffsm*math_ln(diffs)) #****0.5
jm = drdb*dbdm + r*math_ln(base)/(-m**2)
drdl, dldm = r/left/m, np.dot(coeff,diffsm*math_ln(diffs))*0.5
jm = drdl*dldm + r*math_ln(0.5*left)*(-1.0/m/m) #/(-m**2)
if mFix[0]: return np.vstack((drdb*diffsm)).T
else: return np.vstack((drdb*diffsm, jm)).T
if mFix[0]: return np.vstack((drdl*diffsm)).T
else: return np.vstack((drdl*diffsm, jm)).T
def Hosford(eqStress, paras, sigmas, mFix, criteria, Jac = False):
def Hosford(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
'''
Hosford family criteria
the fitted parameters are:
@ -385,26 +401,25 @@ def Hosford(eqStress, paras, sigmas, mFix, criteria, Jac = False):
'''
if criteria == 'vonmises':
coeff = np.ones(3)
sigma0 = paras
coeff = np.ones(3)
a = 2.0
elif criteria == 'hershey':
coeff = np.ones(3)
sigma0 = paras[0]
coeff = np.ones(3)
if mFix[0]: a = mFix[1]
else: a = paras[1]
else:
coeff = paras[0:3]
sigma0 = eqStress
coeff = paras[0:3]
if mFix[0]: a = mFix[1]
else: a = paras[3]
s1,s2,s3 = principalStresses(sigmas)
diffs = np.abs(np.array([s2-s3, s3-s1, s1-s2]))
diffsm = diffs**a
base = np.dot(coeff,diffsm)
expo = 1.0/a
r = (base/2.0)**expo/sigma0
diffs = np.array([s2-s3, s3-s1, s1-s2])**2
diffsm = diffs**(a/2.0)
left = np.dot(coeff,diffsm)
r = (0.5*left)**(1.0/a)/sigma0
if not Jac:
return (r-1.0).ravel()
@ -412,17 +427,16 @@ def Hosford(eqStress, paras, sigmas, mFix, criteria, Jac = False):
if criteria == 'vonmises': # von Mises
return -r/sigma0
else:
dbda = np.dot(coeff,diffsm*math_ln(diffs))
drdb = r/base*expo
ja = drdb*dbda + r*math_ln(base/2.0)*(-expo*expo)
drdl, dlda = r/left/a, np.dot(coeff,diffsm*math_ln(diffs))*0.5
ja = drdl*dlda + r*math_ln(0.5*left)*(-1.0/a/a)
if criteria == 'hershey': # Hershey
if mFix[0]: return -r/sigma0
else: return np.vstack((-r/sigma0, ja)).T
else: # Anisotropic Hosford
if mFix[0]: return np.vstack((drdb*diffsm)).T
else: return np.vstack((drdb*diffsm, ja)).T
if mFix[0]: return np.vstack((drdl*diffsm)).T
else: return np.vstack((drdl*diffsm, ja)).T
def Barlat1989(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def Barlat1989(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
Barlat-Lian 1989 yield criteria
the fitted parameters are:
@ -432,8 +446,8 @@ def Barlat1989(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: m = mFix[1] #???
else: m = paras[-1]
s11 = sigmas[0]; s22 = sigmas[1]; s12 = sigmas[3]
k1,k2 = (s11 + h*s22)/2.0, ((s11 - h*s22)**2/4.0 + (p*s12)**2)**0.5
s11,s22,s12 = sigmas[0], sigmas[1], sigmas[3]
k1,k2 = 0.5*(s11 + h*s22), (0.25*(s11 - h*s22)**2 + (p*s12)**2)**0.5
fs = np.array([ (k1+k2)**2, (k1-k2)**2, 4.0*k2**2 ]); fm = fs**(m/2.0)
left = np.dot(np.array([a,a,c]),fm)
r = (0.5*left)**(1.0/m)/eqStress
@ -442,10 +456,11 @@ def Barlat1989(eqStress, paras, sigmas, mFix, criteria, Jac=False):
return (r-1.0).ravel()
else:
dk1dh = 0.5*s22
dk2dh, dk2dp = 0.5/k2*(s11-h*s22)*(-s22), 0.5/k2*2.0*p*s12**2
dk2dh, dk2dp = 0.25*(s11-h*s22)*(-s22)/k2, p*s12**2/k2
dlda, dldc = fm[0]+fm[1], fm[2]
dldk1, dldk2 = left[0]*m/(k1+k2)+left[1]*m/(k1-k2), left[0]*m/(k1+k2)-left[1]*m/(k1-k2)+left[2]*m/k2
drdl, drdm = r/m/left, r*math_ln(0.5*left)/(-m*m)
fm1 = fs**(m/2.0-1.0)*m
dldk1, dldk2 = a*fm1[0]*(k1+k2)+a*fm1[1]*(k1-k2), a*fm1[0]*(k1+k2)-a*fm1[1]*(k1-k2)+c*fm1[2]*k2*4.0
drdl, drdm = r/m/left, r*math_ln(0.5*left)*(-1.0/m/m)
dldm = np.dot(np.array([a,a,c]),fm*math_ln(fs))*0.5
ja,jc = drdl*dlda, drdl*dldc
@ -455,27 +470,29 @@ def Barlat1989(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: return np.vstack((ja,jc,jh,jp)).T
else: return np.vstack((ja,jc,jh,jp,jm)).T
def Barlat1991(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def Barlat1991(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
Barlat 1991 criteria
the fitted parameters are:
Isotropic: sigma0, m
Anisotropic: a, b, c, f, g, h, m
Anisotropic: a, b, c, f, g, h, m for 3D
a, b, c, h, m for plane stress
m is optional
'''
if criteria == 'barlat1991iso':
sigma0 = paras[0]
coeff = np.ones(6)
else:
sigma0 = eqStress
coeff = paras[0:6]
if mFix[0]:m = mFix[1]
else: m = paras[-1]
sigma0 = eqStress
if dim == 2: coeff = paras[0:4] # plane stress
else: coeff = paras[0:6] # general case
if mFix[0]: m = mFix[1]
else: m = paras[-1]
cos = np.cos; sin = np.sin; pi = np.pi; abs = np.abs
s1,s2,s3,s4,s5,s6 = sigmas
dXdx = np.array([s2-s3,s3-s1,s1-s2,s5,s6,s4])
A,B,C,F,G,H = np.array(coeff)[:,None]*dXdx
s11,s22,s33,s12,s23,s31 = sigmas
if dim == 2:
dXdx = np.array([s22,s33-s11,s11-s22,s12])
A,B,C,H = np.array(coeff)[:,None]*dXdx; F=G=0.0
else:
dXdx = np.array([s22-s33,s33-s11,s11-s22,s23,s31,s12])
A,B,C,F,G,H = np.array(coeff)[:,None]*dXdx
I2 = (F*F + G*G + H*H)/3.0+ ((A-C)**2+(C-B)**2+(B-A)**2)/54.0
I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - ((C-B)*F*F + (A-C)*G*G + (B-A)*H*H)/6.0
@ -489,28 +506,29 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, Jac=False):
return (r - 1.0).ravel()
else:
dfdl = r/left/m
jm = r*math_ln(left)/(-m**2) + dfdl*0.5*(
jm = r*math_ln(left)*(-1.0/m/m) + dfdl*0.5*(
absc1**m*math_ln(absc1) + absc2**m*math_ln(absc2) + absc3**m*math_ln(absc3) )
if criteria == 'barlat1991iso':
js = -r/sigma0
if mFix[0]: return js
else: return np.vstack((js,jm)).T
da,db,dc = (2.0*A-B-C)/18.0, (2.0*B-C-A)/18.0, (2.0*C-A-B)/18.0
if dim == 2:
dI2dx = np.array([da, db, dc, H])/1.5*dXdx
dI3dx = np.array([da*(B-C) + (H**2-G**2)/2.0, db*(C-A) + (F**2-H**2)/2.0, dc*(A-B) + (G**2-F**2)/2.0,
(G*F + (A-B))*H])/3.0*dXdx
else:
da,db,dc = (2.0*A-B-C)/18.0, (2.0*B-C-A)/18.0, (2.0*C-A-B)/18.0
dI2dx = np.array([da, db, dc, F,G,H])/1.5*dXdx
dI3dx = np.array([da*(B-C) + (H**2-G**2)/2.0, db*(C-A) + (F**2-H**2)/2.0, dc*(A-B) + (G**2-F**2)/2.0,
(H*G + (B-C))*F, (F*H + (C-A))*G, (G*F + (A-B))*H])/3.0*dXdx
darccos = -(1.0 - I3**2/I2**3)**(-0.5)
(H*G + (B-C))*F, (F*H + (C-A))*G, (G*F + (A-B))*H])/3.0*dXdx
darccos = -(1.0 - I3**2/I2**3)**(-0.5)
dfdc = dfdl*0.5*m
dfdcos = lambda phi : dfdc*(2.0*abs(cos(phi)))**(1.0/m-1.0)*np.sign(cos(phi))*(-sin(phi)/1.5)
dfdthe= (dfdcos(phi1) + dfdcos(phi2) + dfdcos(phi3))
dfdI2 = dfdthe*darccos*I3*(-1.5)*I2**(-2.5); dfdI3 = dfdthe*darccos*I2**(-1.5)
dfdc = dfdl*0.5*m
dfdcos = lambda phi : dfdc*(2.0*abs(cos(phi)))**(1.0/m-1.0)*np.sign(cos(phi))*(-sin(phi)/1.5)
dfdthe= (dfdcos(phi1) + dfdcos(phi2) + dfdcos(phi3))
dfdI2, dfdI3 = dfdthe*darccos*I3*(-1.5)*I2**(-2.5), dfdthe*darccos*I2**(-1.5)
if mFix[0]: return np.vstack((dfdI2*dI2dx+dfdI3*dI3dx)).T
else: return np.vstack((dfdI2*dI2dx+dfdI3*dI3dx, jm)).T
if mFix[0]: return np.vstack((dfdI2*dI2dx + dfdI3*dI3dx)).T
else: return np.vstack((dfdI2*dI2dx + dfdI3*dI3dx, jm)).T
def BBC2000(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def BBC2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
BBC2000 yield criterion
the fitted parameters are
@ -566,7 +584,7 @@ def BBC2000(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: return np.vstack((ja,jb,jc,jd, je, jf,jg)).T
else: return np.vstack((ja,jb,jc,jd, je, jf,jg,jk)).T
def BBC2003(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def BBC2003(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
BBC2003 yield criterion
the fitted parameters are
@ -611,7 +629,7 @@ def BBC2003(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: return np.vstack(J).T
else : return np.vstack((J, drdl*dldk+drdk)).T
def BBC2005(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def BBC2005(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
BBC2005 yield criterion
the fitted parameters are
@ -661,7 +679,7 @@ def BBC2005(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: return np.vstack(J).T
else : return np.vstack(J, dldk+dsBarde*dedk).T
def Yld2000(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
C: c11,c22,c66 c12=c21=1.0 PASS
D: d11,d12,d21,d22,d66
@ -708,15 +726,17 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, Jac=False):
if mFix[0]: return np.vstack((jC,jD)).T
else: return np.vstack((jC,jD,jm)).T
def Yld200418p(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def Yld200418p(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
Yld2004-18p yield criterion
the fitted parameters are
C: c12,c21,c23,c32,c13,c31,c44,c55,c66; D: d12,d21,d23,d32,d31,d13,d44,d55,d66
C: c12,c21,c23,c32,c13,c31,c44,c55,c66; D: d12,d21,d23,d32,d31,d13,d44,d55,d66 for 3D
C: c12,c21,c23,c32,c13,c31,c44; D: d12,d21,d23,d32,d31,d13,d44 for 2D
and m, m is optional
criteria are invalid input
'''
C,D = paras[0:9], paras[9:18]
if dim == 2: C,D = np.append(paras[0:7],[0.0,0.0]), np.append(paras[7:14],[0.0,0.0])
else: C,D = paras[0:9], paras[9:18]
if mFix[0]: m = mFix[1]
else: m = paras[-1]
@ -727,45 +747,47 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, Jac=False):
p,q = ys(sdev, C), ys(sdev, D)
pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort
m2 = m/2.0; m1 = 1.0/m; m21 = m2-1.0; x3 = xrange(3); dim = len(sv)
m2 = m/2.0; m1 = 1.0/m; m21 = m2-1.0; x3 = xrange(3); num = len(sv)
PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3])
QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,dim)
QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,num)
PiQjs = PiQj**2
phi = np.sum(PiQjs**m2,axis=0)
r = (0.25*phi)**m1/eqStress
left = np.sum(PiQjs**m2,axis=0)
r = (0.25*left)**(1.0/m)/eqStress
if not Jac:
return (r - 1.0).ravel()
else:
drdphi = r*m1/phi*4.0
dphidm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5
dPdc, dQdd = principalStrs_Der(p, sdev), principalStrs_Der(q, sdev)
PiQjs3d = (PiQjs**m21).reshape(3,3,dim)
dphidP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in xrange(dim)]).T
dphidQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in xrange(dim)]).T
drdl, drdm = r/m/left, r*math_ln(0.25*left)*(-1.0/m/m)
dldm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5
dPdc, dQdd = principalStrs_Der(p, sdev, dim), principalStrs_Der(q, sdev, dim)
PiQjs3d = ( PiQjs**(m2-1.0) ).reshape(3,3,num)
dldP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in xrange(num)]).T
dldQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in xrange(num)]).T
jm = drdl*dldm + drdm
jc = drdl*np.sum([dldP[i]*dPdc[i] for i in x3],axis=0)
jd = drdl*np.sum([dldQ[i]*dQdd[i] for i in x3],axis=0)
jm = drdphi*dphidm + r*math_ln(0.25*phi)*(-m1*m1)
jc = drdphi*np.sum([dphidP[i]*dPdc[i] for i in x3],axis=0)
jd = drdphi*np.sum([dphidQ[i]*dQdd[i] for i in x3],axis=0)
if mFix[0]: return np.vstack((jc,jd)).T
else: return np.vstack((jc,jd,jm)).T
def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, Jac=False):
def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
'''
Karafillis-Boyce yield criterion
the fitted parameters are
c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a
c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a for 3D
c11,c12,c13,c14,c21,c22,c23,c24,alpha,b1,b2,a for plane stress
0<alpha<1, b1,b2,a are optional
criteria are invalid input
'''
ks = lambda (s1,s2,s3,s4,s5,s6),(c1,c2,c3,c4,c5,c6): np.array( [
((c2+c3)*s1-c3*s2-c2*s3)/3.0, ((c3+c1)*s2-c3*s1-c1*s3)/3.0,
((c1+c2)*s3-c2*s1-c1*s2)/3.0, c4*s4, c5*s5, c6*s6 ])
C1,C2,alpha = paras[0:6], paras[6:12], paras[12]
if mFix[0]: b1=b2=a = mFix[1]
else: b1,b2,a = paras[13:16]
if dim == 2: C1,C2,alpha = np.append(paras[0:4],[0.0,0.0]), np.append(paras[4:8],[0.0,0.0]), paras[8]
else: C1,C2,alpha = paras[0:6], paras[6:12], paras[12]
if mFix[0]: b1=b2=a = mFix[1]
else: b1,b2,a = paras[len(paras)-3:len(paras)]
p,q = ks(sigmas, C1), ks(sigmas, C2)
plambdas,qlambdas = principalStress(p), principalStress(q)
@ -789,15 +811,15 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, Jac=False):
dphi1dP = phi1/phi10*np.array([ -difPb1[1]*difP[1]+difPb1[2]*difP[2],
difPb1[0]*difP[0]-difPb1[2]*difP[2], difPb1[1]*difP[1]-difPb1[0]*difP[0]])
dphi2dQ = phi2/phi20*Qs*qlambdas*(b2/2.0-1.0)
dPdc = principalStrs_Der(p, sigmas, Karafillis=True)
dQdc = principalStrs_Der(q, sigmas, Karafillis=True)
dPdc = principalStrs_Der(p, sigmas, dim, Karafillis=True)
dQdc = principalStrs_Der(q, sigmas, dim, Karafillis=True)
dphi10db1 = np.sum(difPs**(b1/2.0)*math_ln(difPs), axis=0)*0.5
dphi20db2 = np.sum( Qs**(b2/2.0)*math_ln( Qs), axis=0)*0.5
drb2db2 = rb2*math_ln(3.0) - rb2*math_ln(2.0)/(1.0+2.0**(1.0-b2))
dphi1db1 = phi1*math_ln(phi10)*(-b1i*b1i) + b1i*phi1/(0.5*phi10)* 0.5*dphi10db1
dphi2db2 = phi2*math_ln(phi20)*(-b2i*b2i) + b2i*phi2/(rb2*phi20)*(rb2*dphi20db2 + drb2db2*phi20)
ja = drds*dsda - r*math_ln(Stress)/a/a #drda
ja = drds*dsda + r*math_ln(Stress)*(-1.0/a/a) #drda
jb1 = dphi1db1*(drds*a*phi1**(a-1)*alpha )
jb2 = dphi2db2*(drds*a*phi2**(a-1)*(1.0-alpha))
jc1 = np.sum([dphi1dP[i]*dPdc[i] for i in xrange(3)],axis=0)*drds*a*phi1**(a-1.0)*alpha
@ -812,140 +834,123 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, Jac=False):
fitCriteria = {
'tresca' :{'func' : Tresca,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)],
'paras': 'Initial yield stress:',
'text' : '\nCoefficient of Tresca criterion:\nsigma0: ',
'bound': [ [(None,None)] ],
'paras': [ 'sigma0' ],
'text' : '\nCoefficient of Tresca criterion: ',
'error': 'The standard deviation error is: '
},
'vonmises' :{'func' : Hosford,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)],
'paras': 'Initial yield stress:',
'text' : '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: ',
'bound': [ [(None,None)] ],
'paras': [ 'sigma0' ],
'text' : '\nCoefficient of Huber-Mises-Hencky criterion: ',
'error': 'The standard deviation error is: '
},
'hershey' :{'func' : Hosford,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]+[(2.0,8.0)],
'paras': 'Initial yield stress, a:',
'text' : '\nCoefficients of Hershey criterion:\nsigma0, a: ',
'bound': [ [(None,None)]+[(1.0,8.0)] ],
'paras': [ 'sigma0, a' ],
'text' : '\nCoefficients of Hershey criterion: ',
'error': 'The standard deviation errors are: '
},
'ghosford' :{'func' : Hosford,
'nExpo': 1,'err':np.inf,
'bound': [(0.0,2.0)]*3+[(0.0,12.0)],
'paras': 'F, G, H, a:',
'text' : '\nCoefficients of Hosford criterion:F, G, H, a: ',
'bound': [ [(0.0,2.0)]*3+[(1.0,8.0)] ],
'paras': [ 'F, G, H, a' ],
'text' : '\nCoefficients of Hosford criterion: ',
'error': 'The standard deviation errors are: '
},
'hill1948' :{'func' : Hill1948,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)]*6,
'paras': 'Normalized [F, G, H, L, M, N]:',
'text' : '\nCoefficients of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16,
'bound': [ [(None,None)]*6, [(None,None)]*4 ],
'paras': [ 'F, G, H, L, M, N', 'F, G, H, N'],
'text' : '\nCoefficients of Hill1948 criterion: ',
'error': 'The standard deviation errors are: '
},
'hill1979' :{'func' : Hill1979,
'nExpo': 1,'err':np.inf,
'bound': [(-2.0,2.0)]*6+[(1.0,8.0)],
'paras': 'f,g,h,a,b,c,m:',
'text' : '\nCoefficients of Hill1979 criterion:\n f,g,h,a,b,c,m:\n',
'bound': [ [(-2.0,2.0)]*6+[(1.0,8.0)] ],
'paras': [ 'f,g,h,a,b,c,m' ],
'text' : '\nCoefficients of Hill1979 criterion: ' ,
'error': 'The standard deviation errors are: '
},
'drucker' :{'func' : Drucker,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)]*2,
'paras': 'Initial yield stress, C_D:',
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D: ',
'bound': [ [(None,None)]*2 ],
'paras': [ '\sigma, C_D' ],
'text' : '\nCoefficients of Drucker criterion: ',
'error': 'The standard deviation errors are: '
},
'gdrucker' :{'func' : Drucker,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*2+[(0.0,6.0)],
'paras': 'Initial yield stress, C_D, p:',
'text' : '\nCoefficients of general Drucker criterion:\nsigma0, C_D, p: ',
'bound': [ [(None,None)]*2+[(1.0,8.0)] ],
'paras': [ '\sigma, C_D, p' ],
'text' : '\nCoefficients of general Drucker criterion: ',
'error': 'The standard deviation errors are: '
},
'barlat1989' :{'func' : Barlat1989,
'nExpo': 1,'err':np.inf,
'bound': [(-3.0,3.0)]*4+[(0.0,12.0)],
'paras': 'a,c,h,f, m:',
'text' : '\nCoefficients of isotropic Barlat 1989 criterion:a,c,h,f, m:\n',
'bound': [ [(-3.0,3.0)]*4+[(1.0,8.0)] ],
'paras': [ 'a,c,h,f, m' ],
'text' : '\nCoefficients of isotropic Barlat 1989 criterion: ',
'error': 'The standard deviation errors are: '
},
'barlat1991iso' :{'func' : Barlat1991,
'barlat1991' :{'func' : Barlat1991,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]+[(0.0,12.0)],
'paras': 'Initial yield stress, m:',
'text' : '\nCoefficients of isotropic Barlat 1991 criterion:\nsigma0, m:\n',
'error': 'The standard deviation errors are: '
},
'barlat1991aniso':{'func' : Barlat1991,
'nExpo': 1,'err':np.inf,
'name' : 'Barlat1991',
'bound': [(None,None)]*6+[(0.0,12.0)],
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion: a, b, c, f, g, h, m:\n',
'bound': [ [(-2,2)]*6+[(1.0,8.0)], [(-2,2)]*4+[(1.0,8.0)] ],
'paras': ['a, b, c, f, g, h, m', 'a, b, c, f, m'],
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion: ',
'error': 'The standard deviation errors are: '
},
'bbc2000' :{'func' : BBC2000,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*7+[(1.0,8.0)],
'paras': 'a, b, c, d, e, f, g, k:',
'text' : '\nCoefficients of Banabic-Balan-Comsa 2003 criterion: a, b, c, d, e, f, g, k:\n',
'bound': [ [(None,None)]*7+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]+[(1.0,9.0)],
'paras': [ 'd,e,f,g, b,c,a, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2000 criterion: ',
'error': 'The standard deviation errors are: '
},
'bbc2003' :{'func' : BBC2003,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*7+[(0.0,1.0)]+[(0.0,12.0)],
'paras': 'M, N, P, Q, R, S, T, a, k:',
'text' : '\nCoefficients of Banabic-Balan-Comsa 2005 criterion: M, N, P, Q, R, S, T, a, k:\n',
'bound': [ [(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*7+[(0.0,1.0)]+[(1.0,9.0)],
'paras': [ 'M, N, P, Q, R, S, T, a, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2003 criterion: ',
'error': 'The standard deviation errors are: '
},
'bbc2005' :{'func' : BBC2005,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*8+[(0.0,12.0)],
'paras': 'a, b, L ,M, N, P, Q, R, k:',
'text' : '\nCoefficients of Banabic-Balan-Comsa 2005 criterion: a, b, L ,M, N, P, Q, R, k:\n',
'bound': [ [(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]*2+[(1.0,9.0)],
'paras': [ 'L ,M, N, P, Q, R, a, b, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2005 criterion: ',
'error': 'The standard deviation errors are: '
},
'cb2d' :{'func' : Cazacu_Barlat,
'cazacu' :{'func' : Cazacu_Barlat,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)]*11,
'paras': 'a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:',
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
\n a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:\n',
'error': 'The standard deviation errors are: '
},
'cb3d' :{'func' : Cazacu_Barlat,
'nExpo': 0,'err':np.inf,
'bound': [(None,None)]*18,
'paras': 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c:',
'text' : '\nCoefficients of Cazacu Barlat yield criterion: \
\n a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c\n',
'bound': [ [(None,None)]*16+[(-2.5,2.5)]+[(None,None)] ],
'paras': [ 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c','a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c'],
'text' : '\nCoefficients of Cazacu Barlat yield criterion: ',
'error': 'The standard deviation errors are: '
},
'yld2000' :{'func' : Yld2000,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*8+[(1,8.0)],
'paras': 'c11,c12,c21,c22,c66,d11,d12,d21,d22,d66,m:',
'text' : '\nCoefficients of Yld2000-2D yield criterion: \
\n c11,c12,c21,c22,c66,d11,d12,d21,d22,d66,m:\n',
'bound': [ [(None,None)]*8+[(1.0,8.0)] ],
'paras': [ 'a1,a2,a7,a3,a4,a5,a6,a8,m' ],
'text' : '\nCoefficients of Yld2000-2D yield criterion: ',
'error': 'The standard deviation errors are: '
},
'yld200418p' :{'func' : Yld200418p,
'nExpo': 1,'err':np.inf,
'bound': [(None,None)]*18+[(0.0,12.0)],
'paras': 'c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m:',
'text' : '\nCoefficients of Yld2004-18p yield criterion: \
\n c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m\n',
'bound': [ [(None,None)]*18+[(1.0,8.0)], [(None,None)]*14+[(1.0,8.0)] ],
'paras': [ 'c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m', \
'c12,c21,c23,c32,c31,c13,c44,d12,d21,d23,d32,d31,d13,d44,m' ],
'text' : '\nCoefficients of Yld2004-18p yield criterion: ',
'error': 'The standard deviation errors are: '
},
'karafillis' :{'func' : KarafillisBoyce,
'nExpo': 3,'err':np.inf,
'bound': [(None,None)]*12+[(0.0,1.0)]+[(0.0,12.0)]*3,
'paras': 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a',
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: \
\n c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a\n',
'bound': [ [(None,None)]*12+[(0.0,1.0)]+[(1.0,8.0)]*3, [(None,None)]*8+[(0.0,1.0)]+[(1.0,8.0)]*3],
'paras': [ 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a', \
'c11,c12,c13,c14,c21,c22,c23,c24,alpha,b1,b2,a' ],
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: ',
'error': 'The standard deviation errors are: '
}
}
@ -1080,9 +1085,12 @@ class Criterion(object):
'''
Fitting to certain criterion
'''
def __init__(self,name='worst'):
def __init__(self, exponent, uniaxial, dimension, name='vonmises'):
self.name = name
self.results = fittingCriteria
self.expo = exponent
self.uniaxial= uniaxial
self.dimen = dimension
self.results = fitCriteria
if self.name.lower() not in map(str.lower, self.results.keys()):
raise Exception('no suitable fitting criterion selected')
@ -1094,10 +1102,11 @@ class Criterion(object):
if options.exponent > 0.0: nExponent = nExpo
else: nExponent = 0
nameCriterion = self.name.lower()
criteria = Criteria(nameCriterion,self.uniaxial,self.expo)
textParas = fitCriteria[nameCriterion]['text'] + formatOutput(numParas+nExponent)
criteria = Criteria(nameCriterion,self.uniaxial,self.expo, self.dimen)
textParas = fitCriteria[nameCriterion]['text']+fitCriteria[nameCriterion]['paras'][dDim]+':\n' + \
formatOutput(numParas+nExponent)
textError = fitCriteria[nameCriterion]['error']+ formatOutput(numParas+nExponent,'%-14.8f')+'\n'
bounds = fitCriteria[nameCriterion]['bound'] # Default bounds, no bound
bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound
guess0 = Guess # Default initial guess, depends on bounds
if fitResults == [] : initialguess = guess0
@ -1264,31 +1273,35 @@ Performs calculations with various loads on given geometry file and fits yield s
""", version=string.replace(scriptID,'\n','\\n')
)
# maybe make an option to specifiy if 2D/3D fitting should be done?
parser.add_option('-l','--load' , dest='load', type='float', nargs=3,
help='load: final strain; increments; time %default', metavar='float int float')
parser.add_option('-g','--geometry', dest='geometry', type='string',
help='name of the geometry file [%default]', metavar='string')
parser.add_option('-c','--criterion', dest='criterion', choices=fitCriteria.keys(),
help='criterion for stopping simulations [%default]', metavar='string')
parser.add_option('-l','--load' , dest='load', type='float', nargs=3,
help='load: final strain; increments; time %default', metavar='float int float')
parser.add_option('-g','--geometry', dest='geometry', type='string',
help='name of the geometry file [%default]', metavar='string')
parser.add_option('-c','--criterion', dest='criterion', choices=fitCriteria.keys(),
help='criterion for stopping simulations [%default]', metavar='string')
# best/worse fitting? Stopping?
parser.add_option('-f','--fitting', dest='fitting', choices=thresholdParameter,
help='yield criterion [%default]', metavar='string')
parser.add_option('-y','--yieldvalue', dest='yieldValue', type='float', nargs=3,
help='yield points: start; end; count %default', metavar='float float int')
parser.add_option('--min', dest='min', type='int',
help='minimum number of simulations [%default]', metavar='int')
parser.add_option('--max', dest='max', type='int',
help='maximum number of iterations [%default]', metavar='int')
parser.add_option('-t','--threads', dest='threads', type='int',
help='number of parallel executions [%default]', metavar='int')
parser.add_option('-d','--dimension', dest='dimension', type='int',
help='dimension of the virtual test [%default]', metavar='int')
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
help='Vegter criteria [%default]', metavar='float')
parser.add_option('-e', '--exponent',dest='exponent', type='float',
help='exponent of non-quadratic criteria')
parser.add_option('-u', '--uniaxial',dest='eqStress', type='float',
help='Equivalent stress', metavar='float')
parser.add_option('-f','--fitting', dest='fitting', choices=thresholdParameter,
help='yield criterion [%default]', metavar='string')
parser.add_option('-y','--yieldvalue', dest='yieldValue', type='float', nargs=3,
help='yield points: start; end; count %default', metavar='float float int')
parser.add_option('--min', dest='min', type='int',
help='minimum number of simulations [%default]', metavar='int')
parser.add_option('--max', dest='max', type='int',
help='maximum number of iterations [%default]', metavar='int')
parser.add_option('-t','--threads', dest='threads', type='int',
help='number of parallel executions [%default]', metavar='int')
parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2,
help='yield points: start; end; count %default', metavar='float float')
parser.add_option('-d','--dimension', dest='dimension', type='int',
help='dimension of the virtual test [%default]', metavar='int')
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
help='Vegter criteria [%default]', metavar='float')
parser.add_option('-e', '--exponent', dest='exponent', type='float',
help='exponent of non-quadratic criteria', metavar='int')
parser.add_option('-u', '--uniaxial', dest='eqStress', type='float',
help='Equivalent stress', metavar='float')
parser.set_defaults(min = 12)
parser.set_defaults(max = 30)
parser.set_defaults(threads = 4)
@ -1317,18 +1330,25 @@ if options.yieldValue[0]>options.yieldValue[1]:
parser.error('invalid yield start (below yield end)')
if options.yieldValue[2] != int(options.yieldValue[2]):
parser.error('count must be an integer')
if options.dimension not in [2,3]:
parser.error('Dimension is wrong, should be 2(plane stress state) or 3(general stress state)')
if not os.path.isfile('numerics.config'):
print('numerics.config file not found')
numParas = len(fitCriteria[options.criterion]['bound'])
if not os.path.isfile('material.config'):
print('material.config file not found')
dDim = options.dimension - 3
numParas = len(fitCriteria[options.criterion]['bound'][dDim])
nExpo = fitCriteria[options.criterion]['nExpo']
Guess = []
if options.exponent > 0.0:
numParas = numParas-nExpo # User defines the exponents
fitCriteria[options.criterion]['bound'] = fitCriteria[options.criterion]['bound'][:numParas]
fitCriteria[options.criterion]['bound'][dDim] = fitCriteria[options.criterion]['bound'][dDim][:numParas]
for i in xrange(numParas):
temp = fitCriteria[options.criterion]['bound'][i]
if fitCriteria[options.criterion]['bound'][i] == (None,None):Guess.append(1.0)
temp = fitCriteria[options.criterion]['bound'][dDim][i]
if fitCriteria[options.criterion]['bound'][dDim][i] == (None,None): Guess.append(1.0)
else:
g = (temp[0]+temp[1])/2.0
if g == 0: g = temp[1]*0.5
@ -1336,19 +1356,16 @@ for i in xrange(numParas):
if options.vegter is True:
options.dimension = 2
unitGPa = 10.e8
unitGPa = 10.e5
N_simulations=0
fitResults = []
s=threading.Semaphore(1)
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
strainAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = options.dimension, vegter = options.vegter)
myFit = Criterion(options.criterion)
threads=[]
stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
fitResults = []; fitErrors = []; threads=[]
myFit = Criterion(options.exponent,options.eqStress, options.dimension, options.criterion)
for i in range(options.threads):
threads.append(myThread(i))
threads[i].start()
@ -1356,4 +1373,4 @@ for i in range(options.threads):
for i in range(options.threads):
threads[i].join()
print 'finished fitting to yield criteria'
print 'Finished fitting to yield criteria'