polar decomposition
This commit is contained in:
parent
fca288ae8a
commit
b733bd3038
|
@ -8,9 +8,9 @@ def Cauchy(F,P):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (x,3,3) or (3,3)
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
P : numpy.array of shape (x,3,3) or (3,3)
|
||||
P : numpy.array of shape (:,3,3) or (3,3)
|
||||
1. Piola-Kirchhoff stress.
|
||||
|
||||
"""
|
||||
|
@ -30,7 +30,7 @@ def strain_tensor(F,t,m):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (x,3,3) or (3,3)
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
t : {‘V’, ‘U’}
|
||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
@ -65,7 +65,7 @@ def deviatoric_part(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
|
@ -82,7 +82,7 @@ def spherical_part(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
|
||||
"""
|
||||
|
@ -96,7 +96,7 @@ def Mises_stress(sigma):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (x,3,3) or (3,3)
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
|
@ -111,7 +111,7 @@ def Mises_strain(epsilon):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (x,3,3) or (3,3)
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
|
@ -126,7 +126,7 @@ def symmetric(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the symmetrized values are computed.
|
||||
|
||||
"""
|
||||
|
@ -139,7 +139,7 @@ def maximum_shear(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
|
@ -157,7 +157,7 @@ def principal_components(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the principal compontents are computed.
|
||||
|
||||
"""
|
||||
|
@ -172,9 +172,76 @@ def transpose(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (x,3,3) or (3,3)
|
||||
Tensor of which the transpose is computer.
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the transpose is computed.
|
||||
|
||||
"""
|
||||
return x.T if np.shape(x) == (3,3) else \
|
||||
np.transpose(x,(0,2,1))
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')
|
||||
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')
|
||||
|
||||
|
||||
def __polar_decomposition(x,requested):
|
||||
"""
|
||||
Singular value decomposition.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the singular values are computed.
|
||||
requested : list of str
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
||||
"""
|
||||
u, s, vh = np.linalg.svd(x)
|
||||
R = np.dot(u,vh) if np.shape(x) == (3,3) else \
|
||||
np.einsum('ijk,ikl->ijl',u,vh)
|
||||
|
||||
output = []
|
||||
if 'R' in requested:
|
||||
output.append(R)
|
||||
if 'V' in requested:
|
||||
output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R))
|
||||
if 'U' in requested:
|
||||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||
|
||||
return tuple(output)
|
||||
|
|
Loading…
Reference in New Issue