simple strain calculation for DADF5
further enhancement requires to give optional arguments to add_genericpontwise
This commit is contained in:
parent
18f00cb8df
commit
b6bb8a4650
|
@ -136,9 +136,9 @@ for name in filenames:
|
|||
for column in items['tensor']['column']: # loop over all requested defgrads
|
||||
F = np.array(list(map(float,table.data[column:column+items['tensor']['dim']])),'d').reshape(items['tensor']['shape'])
|
||||
(U,S,Vh) = np.linalg.svd(F) # singular value decomposition
|
||||
R = np.dot(U,Vh) # rotation of polar decomposition
|
||||
stretch['U'] = np.dot(np.linalg.inv(R),F) # F = RU
|
||||
stretch['V'] = np.dot(F,np.linalg.inv(R)) # F = VR
|
||||
R_inv = np.linalg.inv(np.dot(U,Vh)) # inverse rotation of polar decomposition
|
||||
stretch['U'] = np.dot(R_inv,F) # F = RU
|
||||
stretch['V'] = np.dot(F,R_inv) # F = VR
|
||||
|
||||
for theStretch in stretches:
|
||||
stretch[theStretch] = np.where(abs(stretch[theStretch]) < 1e-12, 0, stretch[theStretch]) # kill nasty noisy data
|
||||
|
|
|
@ -224,7 +224,7 @@ class DADF5():
|
|||
|
||||
|
||||
def add_determinant(self,a):
|
||||
"""Adds the determinan of a tensor"""
|
||||
"""Adds the determinant of a tensor"""
|
||||
# ToDo: The output unit should be the input unit
|
||||
args = [{'label':a,'shape':[3,3],'unit':None}]
|
||||
result = {'label':'det({})'.format(a),
|
||||
|
@ -233,6 +233,33 @@ class DADF5():
|
|||
|
||||
self.add_generic_pointwise(np.linalg.det,args,result)
|
||||
|
||||
|
||||
def add_strain_tensors(self,defgrad='F'):
|
||||
"""Adds a strain definition"""
|
||||
def strain(defgrad):
|
||||
(U,S,Vh) = np.linalg.svd(defgrad) # singular value decomposition
|
||||
R_inv = np.linalg.inv(np.dot(U,Vh)) # inverse rotation of polar decomposition
|
||||
U = np.dot(R_inv,defgrad) # F = RU
|
||||
U = np.where(abs(U) < 1e-12, 0, U) # kill nasty noisy data
|
||||
(D,V) = np.linalg.eig(U) # eigen decomposition (of symmetric matrix)
|
||||
neg = np.where(D < 0.0) # find negative eigenvalues ...
|
||||
D[neg] *= -1. # ... flip value ...
|
||||
V[:,neg] *= -1. # ... and vector
|
||||
for i,eigval in enumerate(D):
|
||||
if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
|
||||
V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
|
||||
V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
|
||||
d = np.log(D) # operate on eigenvalues of U o r V
|
||||
return np.dot(V,np.dot(np.diag(d),V.T)).real # build tensor back from eigenvalue/vector basis
|
||||
|
||||
# ToDo: The output unit should be the input unit
|
||||
args = [{'label':defgrad,'shape':[3,3],'unit':None}]
|
||||
result = {'label':'strain({})'.format(defgrad),
|
||||
'unit':'-',
|
||||
'Description': 'strain (ln(V)) of a deformation gradient'}
|
||||
|
||||
self.add_generic_pointwise(strain,args,result)
|
||||
|
||||
|
||||
def get_fitting(self,data):
|
||||
groups = []
|
||||
|
|
Loading…
Reference in New Issue