Merge branch 'development' into fix_homogenization_restart

This commit is contained in:
Vitesh Shah 2021-03-15 12:46:38 +01:00
commit b67724e3f0
45 changed files with 888 additions and 922 deletions

View File

@ -1 +1 @@
v3.0.0-alpha2-530-g0d0226f70
v3.0.0-alpha2-602-ge2d4ab427

View File

@ -1,4 +0,0 @@
[DP_Steel]
crystallite 1
(constituent) phase 1 texture 1 fraction 0.82
(constituent) phase 2 texture 2 fraction 0.18

View File

@ -1,64 +0,0 @@
[TWIP_Steel_FeMnC]
elasticity hooke
plasticity dislotwin
(output) rho_mob
(output) rho_dip
(output) gamma_sl
(output) lambda_sl
(output) tau_pass
(output) f_tw
(output) lambda_tw
(output) tau_hat_tw
(output) f_tr
### Material parameters ###
lattice_structure fcc
C11 175.0e9 # From Music et al. Applied Physics Letters 91, 191904 (2007)
C12 115.0e9
C44 135.0e9
grainsize 2.0e-5 # Average grain size [m]
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
### Dislocation glide parameters ###
Nslip 12
slipburgers 2.56e-10 # Burgers vector of slip system [m]
rhoedgedip0 1.0 # Initial dislocation density [m/m**3]
rhoedge0 1.0e12 # Initial dislocation density [m/m**3]
v0 1.0e-4 # Initial glide velocity [m/s]
Qedge 3.7e-19 # Activation energy for dislocation glide [J]
p_slip 1.0 # p-exponent in glide velocity
q_slip 1.0 # q-exponent in glide velocity
# hardening of glide
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b^3]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interactionSlipSlip 0.122 0.122 0.625 0.07 0.137 0.122 # Interaction coefficients (Kubin et al. 2008)
### Shearband parameters ###
shearbandresistance 180e6
shearbandvelocity 0e-4 # set to zero to turn shear banding of
QedgePerSbSystem 3.7e-19 # Activation energy for shear banding [J]
p_shearband 1.0 # p-exponent in glide velocity
q_shearband 1.0 # q-exponent in glide velocity
### Twinning parameters ###
Ntwin 12
twinburgers 1.47e-10 # Burgers vector of twin system [m]
twinsize 5.0e-8 # Twin stack mean thickness [m]
L0_twin 442.0 # Length of twin nuclei in Burgers vectors
maxtwinfraction 1.0 # Maximum admissible twin volume fraction
xc_twin 1.0e-9 # critical distance for formation of twin nucleus
VcrossSlip 1.67e-29 # cross slip volume
r_twin 10.0 # r-exponent in twin formation probability
Cmfptwin 1.0 # Adj. parameter controlling twin mean free path
Cthresholdtwin 1.0 # Adj. parameter controlling twin threshold stress
interactionSlipTwin 0.0 1.0 1.0 # Dislocation-Twin interaction coefficients
interactionTwinTwin 0.0 1.0 # Twin-Twin interaction coefficients
SFE_0K -0.0396 # stacking fault energy at zero K; TWIP steel: -0.0526; Cu: -0.0396
dSFE_dT 0.0002 # temperature dependance of stacking fault energy

View File

@ -0,0 +1,41 @@
TWIP_Steel_FeMnC:
lattice: cF
mechanics:
elasticity: {type: hooke, C_11: 175.0e9, C_12: 115.0e9, C_44: 135.0e9}
plasticity:
type: dislotwin
output: [rho_mob, rho_dip, gamma_sl, Lambda_sl, tau_pass, f_tw, Lambda_tw, tau_hat_tw, f_tr]
D: 2.0e-5
N_sl: [12]
b_sl: [2.56e-10]
rho_mob_0: [1.0e12]
rho_dip_0: [1.0]
v_0: [1.0e4]
Q_s: [3.7e-19]
p_sl: [1.0]
q_sl: [1.0]
tau_0: [1.5e8]
i_sl: [10.0] # Adj. parameter controlling dislocation mean free path
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
D_a: 1.0 # minimum dipole distance / b
Q_cl: 4.5e-19 # Activation energy for climb / J
h_sl_sl: [0.122, 0.122, 0.625, 0.07, 0.137, 0.122] # Interaction coefficients (Kubin et al. 2008)
# shear band parameters
xi_sb: 180.0e6
Q_sb: 3.7e-19
p_sb: 1.0
q_sb: 1.0
v_sb: 0.0 # set to 0, to turn it off
# twinning parameters
N_tw: [12]
b_tw: [1.47e-10] # Burgers vector length of twin system / b
t_tw: [5.0e-8] # Twin stack mean thickness / m
L_tw: 442.0 # Length of twin nuclei / b
x_c_tw: 1.0e-9 # critical distance for formation of twin nucleus / m
V_cs: 1.67e-29 # cross slip volume / m^3
p_tw: [10.0] # r-exponent in twin formation probability
i_tw: 1.0 # Adj. parameter controlling twin mean free path
h_sl_tw: [0.0, 1.0, 1.0] # dislocation-twin interaction coefficients
h_tw_tw: [0.0, 1.0] # twin-twin interaction coefficients
Gamma_sf_0K: -0.0396 # stacking fault energy / J/m^2 at zero K; TWIP steel: -0.0526; Cu: -0.0396
dGamma_sf_dT: 0.0002 # temperature dependence / J/(m^2 K) of stacking fault energy

View File

@ -1,36 +0,0 @@
[Tungsten]
elasticity hooke
plasticity dislotwin
### Material parameters ###
lattice_structure bcc
C11 523.0e9 # From Marinica et al. Journal of Physics: Condensed Matter(2013)
C12 202.0e9
C44 161.0e9
grainsize 2.0e-5 # Average grain size [m]
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
### Dislocation glide parameters ###
#per family
Nslip 12
slipburgers 2.72e-10 # Burgers vector of slip system [m]
rhoedge0 1.0e12 # Initial edge dislocation density [m/m**3]
rhoedgedip0 1.0 # Initial edged dipole dislocation density [m/m**3]
v0 1.0e-4 # Initial glide velocity [m/s]
Qedge 2.725e-19 # Activation energy for dislocation glide [J]
p_slip 0.78 # p-exponent in glide velocity
q_slip 1.58 # q-exponent in glide velocity
tau_peierls 2.03e9 # peierls stress (for bcc)
dipoleformationfactor 0 # to have hardening due to dipole formation off
#hardening
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interaction_slipslip 1 1 1.4 1.4 1.4 1.4

View File

@ -0,0 +1,21 @@
Tungsten:
lattice: cI
mechanics:
elasticity: {type: hooke, C_11: 523.0e9, C_12: 202.0e9, C_44: 161.0e9} # Marinica et al. Journal of Physics: Condensed Matter(2013)
plasticity:
type: dislotwin
D: 2.0e-5 # Average grain size / m
N_sl: [12]
b_sl: [2.72e-10] # Burgers vector length of slip families / m
rho_mob_0: [1.0e12]
rho_dip_0: [1.0]
v_0: [1.0e4] # Initial glide velocity / m/s
Q_s: [2.725e-19] # Activation energy for dislocation glide / J
p_sl: [0.78] # p-exponent in glide velocity
q_sl: [1.58] # q-exponent in glide velocity
tau_0: [1.5e8] # solid solution strength / Pa
i_sl: [10.0] # Adj. parameter controlling dislocation mean free path
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
D_a: 1.0 # minimum dipole distance / b
Q_cl: 4.5e-19 # Activation energy for climb / J
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]

View File

@ -1,3 +0,0 @@
hydrogenflux_diffusion11 1.0
hydrogenflux_mobility11 1.0
hydrogenVolume 1e-28

View File

@ -1,13 +1,14 @@
# M. Levy, Handbook of Elastic Properties of Solids, Liquids, and Gases (2001)
# C. Zambaldi, "Orientation informed nanoindentation of a-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip", J. Mater. Res., Vol. 27, No. 1, Jan 14, 2012
Ti-alpha:
# Better use values from L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.-S. Park, J. Lind, R.M. Suter, T.R. Bieler, Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy, Acta Mater 2017
cpTi:
lattice: hP
c/a: 1.587
mechanics:
output: [F, P, F_e, F_p, L_p, O]
elasticity: {C_11: 160.0e9, C_12: 90.0e9, C_13: 66.0e9, C_33: 181.7e9, C_44: 46.5e9, type: hooke}
plasticity:
N_sl: [3, 3, 0, 0, 12]
N_sl: [3, 3, 0, 6, 12]
a_sl: 2.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 200e6
@ -15,5 +16,5 @@ Ti-alpha:
n_sl: 20
output: [gamma_sl]
type: phenopowerlaw
xi_0_sl: [349e6, 150e6, 0, 0, 1107e6]
xi_inf_sl: [568e6, 1502e6, 0, 0, 3420e6]
xi_0_sl: [0.15e9, 0.09e9, 0, 0.20e9, 0.25e9]
xi_inf_sl: [0.24e9, 0.5e9, 0, 0.6e9, 0.8e9]

View File

@ -1,5 +1,6 @@
import copy
from io import StringIO
from collections.abc import Iterable
import abc
import numpy as np
@ -44,6 +45,42 @@ class Config(dict):
copy = __copy__
def __or__(self,other):
"""
Update configuration with contents of other.
Parameters
----------
other : damask.Config or dict
Key-value pairs that update self.
"""
duplicate = self.copy()
duplicate.update(other)
return duplicate
def __ior__(self,other):
"""Update configuration with contents of other."""
return self.__or__(other)
def delete(self,keys):
"""
Remove configuration keys.
Parameters
----------
keys : iterable or scalar
Label of the key(s) to remove.
"""
duplicate = self.copy()
for k in keys if isinstance(keys, Iterable) and not isinstance(keys, str) else [keys]:
del duplicate[k]
return duplicate
@classmethod
def load(cls,fname):
"""
@ -99,30 +136,6 @@ class Config(dict):
fhandle.write(yaml.dump(self,Dumper=NiceDumper,**kwargs))
def add(self,d):
"""
Add dictionary.
d : dict
Dictionary to append.
"""
duplicate = self.copy()
duplicate.update(d)
return duplicate
def delete(self,key):
"""
Delete item.
key : str or scalar
Label of the key to remove.
"""
duplicate = self.copy()
del duplicate[key]
return duplicate
@property
@abc.abstractmethod
def is_complete(self):

View File

@ -105,7 +105,7 @@ class Result:
self.view('increments',visible_increments)
in_between = '' if len(visible_increments) < 3 else \
''.join([f'\n{inc}\n ...\n' for inc in visible_increments[1:-2]])
''.join([f'\n{inc}\n ...\n' for inc in visible_increments[1:-1]])
return util.srepr(first + in_between + last)
@ -119,10 +119,10 @@ class Result:
action : str
Select from 'set', 'add', and 'del'.
what : str
Attribute to change (must be in self.visible).
Attribute to change (must be from self.visible).
datasets : list of str or bool
Name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
Name of datasets as list; supports ? and * wildcards.
True is equivalent to [*], False is equivalent to [].
"""
def natural_sort(key):
@ -200,7 +200,7 @@ class Result:
self._allow_modification = True
def disallow_modification(self):
"""Disllow to overwrite existing data (default case)."""
"""Disallow to overwrite existing data (default case)."""
self._allow_modification = False
@ -272,10 +272,10 @@ class Result:
Parameters
----------
what : str
attribute to change (must be from self.visible)
Attribute to change (must be from self.visible).
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
Name of datasets as list; supports ? and * wildcards.
True is equivalent to [*], False is equivalent to [].
"""
self._manage_view('set',what,datasets)
@ -288,10 +288,10 @@ class Result:
Parameters
----------
what : str
attribute to change (must be from self.visible)
Attribute to change (must be from self.visible).
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
Name of datasets as list; supports ? and * wildcards.
True is equivalent to [*], False is equivalent to [].
"""
self._manage_view('add',what,datasets)
@ -304,10 +304,10 @@ class Result:
Parameters
----------
what : str
attribute to change (must be from self.visible)
Attribute to change (must be from self.visible).
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
Name of datasets as list; supports ? and * wildcards.
True is equivalent to [*], False is equivalent to [].
"""
self._manage_view('del',what,datasets)
@ -315,14 +315,14 @@ class Result:
def rename(self,name_old,name_new):
"""
Rename datasets.
Rename dataset.
Parameters
----------
name_old : str
name of the datasets to be renamed
Name of the dataset to be renamed.
name_new : str
new name of the datasets
New name of the dataset.
"""
if self._allow_modification:
@ -353,13 +353,13 @@ class Result:
----------
datasets : iterable or str
constituent : int
Constituent to consider for phase data
Constituent to consider for phase data.
tagged : bool
tag Table.column name with '#constituent'
defaults to False
Tag Table.column name with '#constituent'.
Defaults to False.
split : bool
split Table by increment and return dictionary of Tables
defaults to True
Split Table by increment and return dictionary of Tables.
Defaults to True.
"""
sets = datasets if hasattr(datasets,'__iter__') and not isinstance(datasets,str) else \
@ -371,7 +371,7 @@ class Result:
with h5py.File(self.fname,'r') as f:
for dataset in sets:
for group in self.groups_with_datasets(dataset):
path = os.path.join(group,dataset)
path = '/'.join([group,dataset])
inc,prop,name,cat,item = (path.split('/') + ['']*5)[:5]
key = '/'.join([prop,name+tag])
if key not in inGeom:
@ -388,15 +388,15 @@ class Result:
np.nan,
dtype=np.dtype(f[path]))
data[inGeom[key]] = (f[path] if len(shape)>1 else np.expand_dims(f[path],1))[inData[key]]
path = (os.path.join(*([prop,name]+([cat] if cat else [])+([item] if item else []))) if split else path)+tag
path = ('/'.join([prop,name]+([cat] if cat else [])+([item] if item else [])) if split else path)+tag
if split:
try:
tbl[inc].add(path,data)
tbl[inc] = tbl[inc].add(path,data)
except KeyError:
tbl[inc] = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
else:
try:
tbl.add(path,data)
tbl = tbl.add(path,data)
except AttributeError:
tbl = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
@ -415,7 +415,7 @@ class Result:
are considered as they contain user-relevant data.
Single strings will be treated as list with one entry.
Wild card matching is allowed, but the number of arguments need to fit.
Wild card matching is allowed, but the number of arguments needs to fit.
Parameters
----------

View File

@ -475,15 +475,17 @@ class Rotation:
Parameters
----------
vector : bool, optional
Return as actual Rodrigues-Frank vector, i.e. axis
and angle argument are not separated.
compact : bool, optional
Return as actual Rodrigues-Frank vector,
i.e. axis and angle argument are not separated.
Returns
-------
rho : numpy.ndarray of shape (...,4) unless vector == True:
numpy.ndarray of shape (...,3)
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω [0,π].
rho : numpy.ndarray of shape (...,4) containing
[n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω [0,π]
unless compact == True:
numpy.ndarray of shape (...,3) containing
tan(ω/2) [n_1, n_2, n_3], ω [0,π].
"""
ro = Rotation._qu2ro(self.quaternion)

View File

@ -189,6 +189,11 @@ class Table:
label : str
Column label.
Returns
-------
data : numpy.ndarray
Array of column data.
"""
if re.match(r'[0-9]*?_',label):
idx,key = label.split('_',1)
@ -212,6 +217,11 @@ class Table:
info : str, optional
Human-readable information about the new data.
Returns
-------
table : Table
Updated table.
"""
dup = self.copy()
dup._add_comment(label,data.shape[1:],info)
@ -238,6 +248,11 @@ class Table:
info : str, optional
Human-readable information about the modified data.
Returns
-------
table : Table
Updated table.
"""
dup = self.copy()
dup._add_comment(label,data.shape[1:],info)
@ -261,6 +276,11 @@ class Table:
label : str
Column label.
Returns
-------
table : Table
Updated table.
"""
dup = self.copy()
dup.data.drop(columns=label,inplace=True)
@ -279,6 +299,11 @@ class Table:
label_new : str or iterable of str
New column label(s).
Returns
-------
table : Table
Updated table.
"""
dup = self.copy()
columns = dict(zip([old] if isinstance(old,str) else old,
@ -300,6 +325,11 @@ class Table:
ascending : bool or list, optional
Set sort order.
Returns
-------
table : Table
Updated table.
"""
dup = self.copy()
dup._label_discrete()
@ -320,6 +350,11 @@ class Table:
other : Table
Table to append.
Returns
-------
table : Table
Concatenated table.
"""
if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns):
raise KeyError('Labels or shapes or order do not match')
@ -340,6 +375,11 @@ class Table:
other : Table
Table to join.
Returns
-------
table : Table
Joined table.
"""
if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]:
raise KeyError('Dublicated keys or row count mismatch')

View File

@ -133,6 +133,8 @@ def execute(cmd,
stdout = stdout.decode('utf-8').replace('\x08','')
stderr = stderr.decode('utf-8').replace('\x08','')
if process.returncode != 0:
print(stdout)
print(stderr)
raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}")
return stdout, stderr
@ -193,7 +195,7 @@ def scale_to_coprime(v):
return m
def project_stereographic(vector,normalize=False):
def project_stereographic(vector,direction='z',normalize=True,keepdims=False):
"""
Apply stereographic projection to vector.
@ -201,18 +203,37 @@ def project_stereographic(vector,normalize=False):
----------
vector : numpy.ndarray of shape (...,3)
Vector coordinates to be projected.
direction : str
Projection direction 'x', 'y', or 'z'.
Defaults to 'z'.
normalize : bool
Ensure unit length for vector. Defaults to False.
Ensure unit length of input vector. Defaults to True.
keepdims : bool
Maintain three-dimensional output coordinates.
Default two-dimensional output uses right-handed frame spanned by
the next and next-next axis relative to the projection direction,
e.g. x-y when projecting along z and z-x when projecting along y.
Returns
-------
coordinates : numpy.ndarray of shape (...,2)
coordinates : numpy.ndarray of shape (...,2 | 3)
Projected coordinates.
Examples
--------
>>> project_stereographic(np.ones(3))
[0.3660254, 0.3660254]
>>> project_stereographic(np.ones(3),direction='x',normalize=False,keepdims=True)
[0, 0.5, 0.5]
>>> project_stereographic([0,1,1],direction='y',normalize=True,keepdims=False)
[0.41421356, 0]
"""
v_ = vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector
return np.block([v_[...,:2]/(1+np.abs(v_[...,2:3])),
np.zeros_like(v_[...,2:3])])
shift = 'zyx'.index(direction)
v_ = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
shift,axis=-1)
return np.roll(np.block([v_[...,:2]/(1+np.abs(v_[...,2:3])),np.zeros_like(v_[...,2:3])]),
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
def execution_stamp(class_name,function_name=None):

View File

@ -23,8 +23,17 @@ class TestConfig:
assert Config.load(f) == config
def test_add_remove(self):
dummy = {'hello':'world','foo':'bar'}
config = Config()
assert config.add({'hello':'world'}).delete('hello') == config
config |= dummy
assert config == Config() | dummy
config = config.delete(dummy)
assert config == Config()
assert (config | dummy ).delete( 'hello' ) == config | {'foo':'bar'}
assert (config | dummy ).delete([ 'hello', 'foo' ]) == config
assert (config | Config(dummy)).delete({ 'hello':1,'foo':2 }) == config
assert (config | Config(dummy)).delete(Config({'hello':1 })) == config | {'foo':'bar'}
def test_repr(self,tmp_path):
config = Config()

View File

@ -49,17 +49,18 @@ class TestUtil:
dist_sampled = np.histogram(centers[selected],bins)[0]/N_samples*np.sum(dist)
assert np.sqrt(((dist - dist_sampled) ** 2).mean()) < .025 and selected.shape[0]==N_samples
@pytest.mark.parametrize('point,normalize,answer',
@pytest.mark.parametrize('point,direction,normalize,keepdims,answer',
[
([1,0,0],False,[1,0,0]),
([1,0,0],True, [1,0,0]),
([0,1,1],False,[0,0.5,0]),
([0,1,1],True, [0,0.41421356,0]),
([1,1,1],False,[0.5,0.5,0]),
([1,1,1],True, [0.3660254, 0.3660254, 0]),
([1,0,0],'z',False,True, [1,0,0]),
([1,0,0],'z',True, False,[1,0]),
([0,1,1],'z',False,True, [0,0.5,0]),
([0,1,1],'y',True, False,[0.41421356,0]),
([1,1,0],'x',False,False,[0.5,0]),
([1,1,1],'y',True, True, [0.3660254, 0,0.3660254]),
])
def test_project_stereographic(self,point,normalize,answer):
assert np.allclose(util.project_stereographic(np.array(point),normalize=normalize),answer)
def test_project_stereographic(self,point,direction,normalize,keepdims,answer):
assert np.allclose(util.project_stereographic(np.array(point),direction=direction,
normalize=normalize,keepdims=keepdims),answer)
@pytest.mark.parametrize('fro,to,mode,answer',
[

View File

@ -178,11 +178,11 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) call CPFEM_forward
chosenThermal1: select case (thermal_type(material_homogenizationAt(elCP)))
!case (THERMAL_conduction_ID) chosenThermal1
!chosenThermal1: select case (thermal_type(material_homogenizationAt(elCP)))
! case (THERMAL_conduction_ID) chosenThermal1
! temperature(material_homogenizationAt(elCP))%p(material_homogenizationMemberAt(ip,elCP)) = &
! temperature_inp
end select chosenThermal1
!end select chosenThermal1
homogenization_F0(1:3,1:3,ma) = ffn
homogenization_F(1:3,1:3,ma) = ffn1

View File

@ -207,11 +207,11 @@ subroutine selfTest
select type(s1)
class is(tScalar)
s1 = '1'
if(s1%asInt() /= 1) error stop 'tScalar_asInt'
if(dNeq(s1%asFloat(),1.0_pReal)) error stop 'tScalar_asFloat'
if (s1%asInt() /= 1) error stop 'tScalar_asInt'
if (dNeq(s1%asFloat(),1.0_pReal)) error stop 'tScalar_asFloat'
s1 = 'true'
if(.not. s1%asBool()) error stop 'tScalar_asBool'
if(s1%asString() /= 'true') error stop 'tScalar_asString'
if (.not. s1%asBool()) error stop 'tScalar_asBool'
if (s1%asString() /= 'true') error stop 'tScalar_asString'
end select
block
@ -232,18 +232,18 @@ subroutine selfTest
call l1%append(s1)
call l1%append(s2)
n => l1
if(any(l1%asInts() /= [2,3])) error stop 'tList_asInts'
if(any(dNeq(l1%asFloats(),[2.0_pReal,3.0_pReal]))) error stop 'tList_asFloats'
if(n%get_asInt(1) /= 2) error stop 'byIndex_asInt'
if(dNeq(n%get_asFloat(2),3.0_pReal)) error stop 'byIndex_asFloat'
if (any(l1%asInts() /= [2,3])) error stop 'tList_asInts'
if (any(dNeq(l1%asFloats(),[2.0_pReal,3.0_pReal]))) error stop 'tList_asFloats'
if (n%get_asInt(1) /= 2) error stop 'byIndex_asInt'
if (dNeq(n%get_asFloat(2),3.0_pReal)) error stop 'byIndex_asFloat'
endselect
allocate(tList::l2)
select type(l2)
class is(tList)
call l2%append(l1)
if(any(l2%get_asInts(1) /= [2,3])) error stop 'byIndex_asInts'
if(any(dNeq(l2%get_asFloats(1),[2.0_pReal,3.0_pReal]))) error stop 'byIndex_asFloats'
if (any(l2%get_asInts(1) /= [2,3])) error stop 'byIndex_asInts'
if (any(dNeq(l2%get_asFloats(1),[2.0_pReal,3.0_pReal]))) error stop 'byIndex_asFloats'
n => l2
end select
deallocate(n)
@ -265,10 +265,10 @@ subroutine selfTest
call l1%append(s2)
n => l1
if(any(l1%asBools() .neqv. [.true., .false.])) error stop 'tList_asBools'
if(any(l1%asStrings() /= ['true ','False'])) error stop 'tList_asStrings'
if(n%get_asBool(2)) error stop 'byIndex_asBool'
if(n%get_asString(1) /= 'true') error stop 'byIndex_asString'
if (any(l1%asBools() .neqv. [.true., .false.])) error stop 'tList_asBools'
if (any(l1%asStrings() /= ['true ','False'])) error stop 'tList_asStrings'
if (n%get_asBool(2)) error stop 'byIndex_asBool'
if (n%get_asString(1) /= 'true') error stop 'byIndex_asString'
end block
end subroutine selfTest
@ -418,7 +418,7 @@ function tNode_get_byIndex(self,i) result(node)
integer :: j
self_ => self%asList()
if(i < 1 .or. i > self_%length) call IO_error(150,ext_msg='tNode_get_byIndex')
if (i < 1 .or. i > self_%length) call IO_error(150,ext_msg='tNode_get_byIndex')
j = 1
item => self_%first
@ -599,7 +599,7 @@ function tNode_getKey_byIndex(self,i) result(key)
dict => self%asDict()
item => dict%first
do j = 1, dict%length
if(j == i) then
if (j == i) then
key = item%key
exit
else
@ -624,18 +624,18 @@ function tNode_contains(self,k) result(exists)
type(tDict), pointer :: dict
exists = .false.
if(self%isDict()) then
if (self%isDict()) then
dict => self%asDict()
do j=1, dict%length
if(dict%getKey(j) == k) then
if (dict%getKey(j) == k) then
exists = .true.
return
endif
enddo
elseif(self%isList()) then
elseif (self%isList()) then
list => self%asList()
do j =1, list%length
if(list%get_asString(j) == k) then
do j=1, list%length
if (list%get_asString(j) == k) then
exists = .true.
return
endif
@ -663,7 +663,7 @@ function tNode_get_byKey(self,k,defaultVal) result(node)
logical :: found
found = present(defaultVal)
if(found) node => defaultVal
if (found) node => defaultVal
self_ => self%asDict()
@ -681,7 +681,7 @@ function tNode_get_byKey(self,k,defaultVal) result(node)
if (.not. found) then
call IO_error(143,ext_msg=k)
else
if(associated(item)) node => item%node
if (associated(item)) node => item%node
endif
end function tNode_get_byKey
@ -700,11 +700,11 @@ function tNode_get_byKey_asFloat(self,k,defaultVal) result(nodeAsFloat)
class(tNode), pointer :: node
type(tScalar), pointer :: scalar
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
scalar => node%asScalar()
nodeAsFloat = scalar%asFloat()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsFloat = defaultVal
else
call IO_error(143,ext_msg=k)
@ -726,11 +726,11 @@ function tNode_get_byKey_asInt(self,k,defaultVal) result(nodeAsInt)
class(tNode), pointer :: node
type(tScalar), pointer :: scalar
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
scalar => node%asScalar()
nodeAsInt = scalar%asInt()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsInt = defaultVal
else
call IO_error(143,ext_msg=k)
@ -752,11 +752,11 @@ function tNode_get_byKey_asBool(self,k,defaultVal) result(nodeAsBool)
class(tNode), pointer :: node
type(tScalar), pointer :: scalar
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
scalar => node%asScalar()
nodeAsBool = scalar%asBool()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsBool = defaultVal
else
call IO_error(143,ext_msg=k)
@ -778,11 +778,11 @@ function tNode_get_byKey_asString(self,k,defaultVal) result(nodeAsString)
class(tNode), pointer :: node
type(tScalar), pointer :: scalar
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
scalar => node%asScalar()
nodeAsString = scalar%asString()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsString = defaultVal
else
call IO_error(143,ext_msg=k)
@ -806,18 +806,18 @@ function tNode_get_byKey_asFloats(self,k,defaultVal,requiredSize) result(nodeAsF
class(tNode), pointer :: node
type(tList), pointer :: list
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
list => node%asList()
nodeAsFloats = list%asFloats()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsFloats = defaultVal
else
call IO_error(143,ext_msg=k)
endif
if(present(requiredSize)) then
if(requiredSize /= size(nodeAsFloats)) call IO_error(146,ext_msg=k)
if (present(requiredSize)) then
if (requiredSize /= size(nodeAsFloats)) call IO_error(146,ext_msg=k)
endif
end function tNode_get_byKey_asFloats
@ -837,18 +837,18 @@ function tNode_get_byKey_asInts(self,k,defaultVal,requiredSize) result(nodeAsInt
class(tNode), pointer :: node
type(tList), pointer :: list
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
list => node%asList()
nodeAsInts = list%asInts()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsInts = defaultVal
else
call IO_error(143,ext_msg=k)
endif
if(present(requiredSize)) then
if(requiredSize /= size(nodeAsInts)) call IO_error(146,ext_msg=k)
if (present(requiredSize)) then
if (requiredSize /= size(nodeAsInts)) call IO_error(146,ext_msg=k)
endif
end function tNode_get_byKey_asInts
@ -867,11 +867,11 @@ function tNode_get_byKey_asBools(self,k,defaultVal) result(nodeAsBools)
class(tNode), pointer :: node
type(tList), pointer :: list
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
list => node%asList()
nodeAsBools = list%asBools()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsBools = defaultVal
else
call IO_error(143,ext_msg=k)
@ -893,11 +893,11 @@ function tNode_get_byKey_asStrings(self,k,defaultVal) result(nodeAsStrings)
class(tNode), pointer :: node
type(tList), pointer :: list
if(self%contains(k)) then
if (self%contains(k)) then
node => self%get(k)
list => node%asList()
nodeAsStrings = list%asStrings()
elseif(present(defaultVal)) then
elseif (present(defaultVal)) then
nodeAsStrings = defaultVal
else
call IO_error(143,ext_msg=k)
@ -944,7 +944,7 @@ function tNode_get_byKey_asIndex(self,key) result(keyIndex)
item => dict%first
keyIndex = -1
do i = 1, dict%length
if(key == item%key) then
if (key == item%key) then
keyIndex = i
exit
else
@ -952,7 +952,7 @@ function tNode_get_byKey_asIndex(self,key) result(keyIndex)
endif
enddo
if(keyIndex == -1) call IO_error(140,ext_msg=key)
if (keyIndex == -1) call IO_error(140,ext_msg=key)
end function tNode_get_byKey_asIndex
@ -985,7 +985,7 @@ recursive function tList_asFormattedString(self,indent) result(str)
integer :: i, indent_
str = ''
if(present(indent)) then
if (present(indent)) then
indent_ = indent
else
indent_ = 0
@ -993,7 +993,7 @@ recursive function tList_asFormattedString(self,indent) result(str)
item => self%first
do i = 1, self%length
if(i /= 1) str = str//repeat(' ',indent_)
if (i /= 1) str = str//repeat(' ',indent_)
str = str//'- '//item%node%asFormattedString(indent_+2)
item => item%next
end do
@ -1014,7 +1014,7 @@ recursive function tDict_asFormattedString(self,indent) result(str)
integer :: i, indent_
str = ''
if(present(indent)) then
if (present(indent)) then
indent_ = indent
else
indent_ = 0
@ -1022,7 +1022,7 @@ recursive function tDict_asFormattedString(self,indent) result(str)
item => self%first
do i = 1, self%length
if(i /= 1) str = str//repeat(' ',indent_)
if (i /= 1) str = str//repeat(' ',indent_)
select type(node_1 =>item%node)
class is(tScalar)
str = str//trim(item%key)//': '//item%node%asFormattedString(indent_+len_trim(item%key)+2)
@ -1270,7 +1270,7 @@ recursive subroutine tItem_finalize(self)
type(tItem),intent(inout) :: self
deallocate(self%node)
if(associated(self%next)) deallocate(self%next)
if (associated(self%next)) deallocate(self%next)
end subroutine tItem_finalize

View File

@ -37,9 +37,10 @@ program DAMASK_grid
f_out, & !< frequency of result writes
f_restart !< frequency of restart writes
logical :: estimate_rate !< follow trajectory of former loadcase
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
end type tLoadCase
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
!--------------------------------------------------------------------------------------------------
! variables related to information from load case and geom file
real(pReal), dimension(9) :: temp_valueVector !< temporarily from loadcase file when reading in tensors (initialize to 0.0)
@ -53,6 +54,7 @@ program DAMASK_grid
integer, parameter :: &
subStepFactor = 2 !< for each substep, divide the last time increment by 2.0
real(pReal) :: &
T_0 = 300.0_pReal, &
time = 0.0_pReal, & !< elapsed time
time0 = 0.0_pReal, & !< begin of interval
timeinc = 1.0_pReal, & !< current time interval
@ -78,8 +80,7 @@ program DAMASK_grid
maxCutBack, & !< max number of cut backs
stagItMax !< max number of field level staggered iterations
character(len=pStringLen) :: &
incInfo, &
loadcase_string
incInfo
type(tLoadCase), allocatable, dimension(:) :: loadCases !< array of all load cases
type(tSolutionState), allocatable, dimension(:) :: solres
@ -98,10 +99,13 @@ program DAMASK_grid
quit
class (tNode), pointer :: &
num_grid, &
debug_grid, & ! pointer to grid debug options
config_load, &
load_steps, &
load_step, &
solver, &
initial_conditions, &
ic_thermal, &
thermal, &
step_bc, &
step_mech, &
step_discretization, &
@ -112,17 +116,11 @@ program DAMASK_grid
! init DAMASK (all modules)
call CPFEM_initAll
print'(/,a)', ' <<<+- DAMASK_spectral init -+>>>'; flush(IO_STDOUT)
print'(/,a)', ' <<<+- DAMASK_grid init -+>>>'; flush(IO_STDOUT)
print*, 'Shanthraj et al., Handbook of Mechanics of Materials, 2019'
print*, 'https://doi.org/10.1007/978-981-10-6855-3_80'
!--------------------------------------------------------------------------------------------------
! initialize field solver information
nActiveFields = 1
if (any(thermal_type == THERMAL_conduction_ID )) nActiveFields = nActiveFields + 1
if (any(damage_type == DAMAGE_nonlocal_ID )) nActiveFields = nActiveFields + 1
allocate(solres(nActiveFields))
!-------------------------------------------------------------------------------------------------
! reading field paramters from numerics file and do sanity checks
@ -133,19 +131,22 @@ program DAMASK_grid
if (stagItMax < 0) call IO_error(301,ext_msg='maxStaggeredIter')
if (maxCutBack < 0) call IO_error(301,ext_msg='maxCutBack')
config_load => YAML_parse_file(trim(interface_loadFile))
solver => config_load%get('solver')
!--------------------------------------------------------------------------------------------------
! assign mechanics solver depending on selected type
debug_grid => config_debug%get('grid',defaultVal=emptyList)
select case (trim(num_grid%get_asString('solver', defaultVal = 'Basic')))
case ('Basic')
nActiveFields = 1
select case (solver%get_asString('mechanical'))
case ('spectral_basic')
mechanical_init => grid_mechanical_spectral_basic_init
mechanical_forward => grid_mechanical_spectral_basic_forward
mechanical_solution => grid_mechanical_spectral_basic_solution
mechanical_updateCoords => grid_mechanical_spectral_basic_updateCoords
mechanical_restartWrite => grid_mechanical_spectral_basic_restartWrite
case ('Polarisation')
case ('spectral_polarization')
mechanical_init => grid_mechanical_spectral_polarisation_init
mechanical_forward => grid_mechanical_spectral_polarisation_forward
mechanical_solution => grid_mechanical_spectral_polarisation_solution
@ -160,32 +161,36 @@ program DAMASK_grid
mechanical_restartWrite => grid_mechanical_FEM_restartWrite
case default
call IO_error(error_ID = 891, ext_msg = trim(num_grid%get_asString('solver')))
call IO_error(error_ID = 891, ext_msg = trim(solver%get_asString('mechanical')))
end select
!--------------------------------------------------------------------------------------------------
! initialize field solver information
if (solver%get_asString('thermal',defaultVal = 'n/a') == 'spectral') nActiveFields = nActiveFields + 1
if (solver%get_asString('damage', defaultVal = 'n/a') == 'spectral') nActiveFields = nActiveFields + 1
allocate(solres(nActiveFields))
allocate( ID(nActiveFields))
field = 1
ID(field) = FIELD_MECH_ID ! mechanical active by default
thermalActive: if (solver%get_asString('thermal',defaultVal = 'n/a') == 'spectral') then
field = field + 1
ID(field) = FIELD_THERMAL_ID
endif thermalActive
damageActive: if (solver%get_asString('damage',defaultVal = 'n/a') == 'spectral') then
field = field + 1
ID(field) = FIELD_DAMAGE_ID
endif damageActive
!--------------------------------------------------------------------------------------------------
! reading information from load case file and to sanity checks
config_load => YAML_parse_file(trim(interface_loadFile))
load_steps => config_load%get('loadstep')
allocate(loadCases(load_steps%length)) ! array of load cases
do l = 1, load_steps%length
allocate(loadCases(l)%ID(nActiveFields))
field = 1
loadCases(l)%ID(field) = FIELD_MECH_ID ! mechanical active by default
thermalActive: if (any(thermal_type == THERMAL_conduction_ID)) then
field = field + 1
loadCases(l)%ID(field) = FIELD_THERMAL_ID
endif thermalActive
damageActive: if (any(damage_type == DAMAGE_nonlocal_ID)) then
field = field + 1
loadCases(l)%ID(field) = FIELD_DAMAGE_ID
endif damageActive
load_step => load_steps%get(l)
step_bc => load_step%get('boundary_conditions')
step_mech => step_bc%get('mechanical')
@ -220,19 +225,17 @@ program DAMASK_grid
if (.not. allocated(loadCases(l)%deformation%myType)) call IO_error(error_ID=837,ext_msg = 'L/dot_F/F missing')
step_discretization => load_step%get('discretization')
if(.not. step_discretization%contains('t')) call IO_error(error_ID=837,ext_msg = 't missing')
if(.not. step_discretization%contains('N')) call IO_error(error_ID=837,ext_msg = 'N missing')
if (.not. step_discretization%contains('t')) call IO_error(error_ID=837,ext_msg = 't missing')
if (.not. step_discretization%contains('N')) call IO_error(error_ID=837,ext_msg = 'N missing')
loadCases(l)%t = step_discretization%get_asFloat('t')
loadCases(l)%N = step_discretization%get_asInt ('N')
loadCases(l)%r = step_discretization%get_asFloat('r', defaultVal= 1.0_pReal)
loadCases(l)%f_restart = load_step%get_asInt('f_restart', defaultVal=huge(0))
loadCases(l)%f_out = load_step%get_asInt('f_out', defaultVal=1)
loadCases(l)%estimate_rate = (load_step%get_asBool('estimate_rate',defaultVal=.true.) .and. &
merge(.true.,.false.,l > 1))
loadCases(l)%estimate_rate = (load_step%get_asBool('estimate_rate',defaultVal=.true.) .and. l>1)
reportAndCheck: if (worldrank == 0) then
write (loadcase_string, '(i0)' ) l
print'(/,a,i0)', ' load case: ', l
print*, ' estimate_rate:', loadCases(l)%estimate_rate
if (loadCases(l)%deformation%myType == 'L') then
@ -292,7 +295,7 @@ program DAMASK_grid
if (loadCases(l)%f_restart < huge(0)) &
print'(a,i0)', ' f_restart: ', loadCases(l)%f_restart
if (errorID > 0) call IO_error(error_ID = errorID, ext_msg = loadcase_string) ! exit with error message
if (errorID > 0) call IO_error(error_ID = errorID, el = l)
endif reportAndCheck
enddo
@ -301,12 +304,14 @@ program DAMASK_grid
! doing initialization depending on active solvers
call spectral_Utilities_init
do field = 1, nActiveFields
select case (loadCases(1)%ID(field))
select case (ID(field))
case(FIELD_MECH_ID)
call mechanical_init
case(FIELD_THERMAL_ID)
call grid_thermal_spectral_init
initial_conditions => config_load%get('initial_conditions',defaultVal=emptyDict)
thermal => initial_conditions%get('thermal',defaultVal=emptyDict)
call grid_thermal_spectral_init(thermal%get_asFloat('T',defaultVal = T_0))
case(FIELD_DAMAGE_ID)
call grid_damage_spectral_init
@ -377,7 +382,7 @@ program DAMASK_grid
!--------------------------------------------------------------------------------------------------
! forward fields
do field = 1, nActiveFields
select case(loadCases(l)%ID(field))
select case(ID(field))
case(FIELD_MECH_ID)
call mechanical_forward (&
cutBack,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
@ -397,7 +402,7 @@ program DAMASK_grid
stagIterate = .true.
do while (stagIterate)
do field = 1, nActiveFields
select case(loadCases(l)%ID(field))
select case(ID(field))
case(FIELD_MECH_ID)
solres(field) = mechanical_solution(incInfo)
case(FIELD_THERMAL_ID)

View File

@ -160,7 +160,7 @@ function grid_damage_spectral_solution(timeinc) result(solution)
real(pReal), intent(in) :: &
timeinc !< increment in time for current solution
integer :: i, j, k, cell
integer :: i, j, k, ce
type(tSolutionState) :: solution
PetscInt :: devNull
PetscReal :: phi_min, phi_max, stagNorm, solnNorm
@ -193,10 +193,10 @@ function grid_damage_spectral_solution(timeinc) result(solution)
!--------------------------------------------------------------------------------------------------
! updating damage state
cell = 0
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
call damage_nonlocal_putNonLocalDamage(phi_current(i,j,k),1,cell)
ce = ce + 1
call damage_nonlocal_putNonLocalDamage(phi_current(i,j,k),ce)
enddo; enddo; enddo
call VecMin(solution_vec,devNull,phi_min,ierr); CHKERRQ(ierr)
@ -216,7 +216,7 @@ end function grid_damage_spectral_solution
subroutine grid_damage_spectral_forward(cutBack)
logical, intent(in) :: cutBack
integer :: i, j, k, cell
integer :: i, j, k, ce
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: x_scal
PetscErrorCode :: ierr
@ -226,14 +226,14 @@ subroutine grid_damage_spectral_forward(cutBack)
phi_stagInc = phi_lastInc
!--------------------------------------------------------------------------------------------------
! reverting damage field state
cell = 0
ce = 0
call SNESGetDM(damage_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution_vec,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = phi_current
call DMDAVecRestoreArrayF90(dm_local,solution_vec,x_scal,ierr); CHKERRQ(ierr)
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
call damage_nonlocal_putNonLocalDamage(phi_current(i,j,k),1,cell)
ce = ce + 1
call damage_nonlocal_putNonLocalDamage(phi_current(i,j,k),ce)
enddo; enddo; enddo
else
phi_lastInc = phi_current
@ -258,7 +258,7 @@ subroutine formResidual(in,x_scal,f_scal,dummy,ierr)
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer :: i, j, k, cell
integer :: i, j, k, ce
real(pReal) :: phiDot, dPhiDot_dPhi, mobility
phi_current = x_scal
@ -269,20 +269,20 @@ subroutine formResidual(in,x_scal,f_scal,dummy,ierr)
call utilities_FFTscalarForward
call utilities_fourierScalarGradient !< calculate gradient of damage field
call utilities_FFTvectorBackward
cell = 0
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
vectorField_real(1:3,i,j,k) = matmul(damage_nonlocal_getDiffusion(1,cell) - K_ref, &
ce = ce + 1
vectorField_real(1:3,i,j,k) = matmul(damage_nonlocal_getDiffusion(ce) - K_ref, &
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward
call utilities_fourierVectorDivergence !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward
cell = 0
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
call damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi_current(i,j,k), 1, cell)
mobility = damage_nonlocal_getMobility(1,cell)
ce = ce + 1
call damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi_current(i,j,k),ce)
mobility = damage_nonlocal_getMobility(ce)
scalarField_real(i,j,k) = params%timeinc*(scalarField_real(i,j,k) + phiDot) &
+ mobility*(phi_lastInc(i,j,k) - phi_current(i,j,k)) &
+ mu_ref*phi_current(i,j,k)
@ -310,15 +310,15 @@ end subroutine formResidual
!--------------------------------------------------------------------------------------------------
subroutine updateReference
integer :: i,j,k,cell,ierr
integer :: i,j,k,ce,ierr
cell = 0
ce = 0
K_ref = 0.0_pReal
mu_ref = 0.0_pReal
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
K_ref = K_ref + damage_nonlocal_getDiffusion(1,cell)
mu_ref = mu_ref + damage_nonlocal_getMobility(1,cell)
ce = ce + 1
K_ref = K_ref + damage_nonlocal_getDiffusion(ce)
mu_ref = mu_ref + damage_nonlocal_getMobility(ce)
enddo; enddo; enddo
K_ref = K_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,K_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)

View File

@ -116,7 +116,7 @@ subroutine grid_mechanical_spectral_polarisation_init
num_grid, &
debug_grid
print'(/,a)', ' <<<+- grid_mechanical_spectral_polarisation init -+>>>'; flush(IO_STDOUT)
print'(/,a)', ' <<<+- grid_mechanical_spectral_polarization init -+>>>'; flush(IO_STDOUT)
print*, 'Shanthraj et al., International Journal of Plasticity 66:3145, 2015'
print*, 'https://doi.org/10.1016/j.ijplas.2014.02.006'

View File

@ -61,7 +61,9 @@ contains
!> @brief allocates all neccessary fields and fills them with data
! ToDo: Restart not implemented
!--------------------------------------------------------------------------------------------------
subroutine grid_thermal_spectral_init
subroutine grid_thermal_spectral_init(T_0)
real(pReal), intent(in) :: T_0
PetscInt, dimension(0:worldsize-1) :: localK
integer :: i, j, k, ce
@ -131,9 +133,10 @@ subroutine grid_thermal_spectral_init
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
ce = ce + 1
T_current(i,j,k) = homogenization_thermal_T(ce)
T_current(i,j,k) = T_0
T_lastInc(i,j,k) = T_current(i,j,k)
T_stagInc(i,j,k) = T_current(i,j,k)
call homogenization_thermal_setField(T_0,0.0_pReal,ce)
enddo; enddo; enddo
call DMDAVecGetArrayF90(thermal_grid,solution_vec,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = T_current
@ -268,7 +271,7 @@ subroutine formResidual(in,x_scal,f_scal,dummy,ierr)
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
ce = ce + 1
vectorField_real(1:3,i,j,k) = matmul(thermal_conduction_getConductivity(1,ce) - K_ref, &
vectorField_real(1:3,i,j,k) = matmul(thermal_conduction_getConductivity(ce) - K_ref, &
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward
@ -277,7 +280,7 @@ subroutine formResidual(in,x_scal,f_scal,dummy,ierr)
ce = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
ce = ce + 1
call thermal_conduction_getSource(Tdot, 1,ce)
call thermal_conduction_getSource(Tdot,1,ce)
scalarField_real(i,j,k) = params%timeinc*(scalarField_real(i,j,k) + Tdot) &
+ thermal_conduction_getMassDensity (ce)* &
thermal_conduction_getSpecificHeat(ce)*(T_lastInc(i,j,k) - &
@ -310,7 +313,7 @@ subroutine updateReference
mu_ref = 0.0_pReal
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
ce = ce + 1
K_ref = K_ref + thermal_conduction_getConductivity(1,ce)
K_ref = K_ref + thermal_conduction_getConductivity(ce)
mu_ref = mu_ref + thermal_conduction_getMassDensity(ce)* thermal_conduction_getSpecificHeat(ce)
enddo; enddo; enddo
K_ref = K_ref*wgt

View File

@ -35,19 +35,11 @@ module homogenization
homogState, &
damageState_h
integer, dimension(:), allocatable, public, protected :: &
homogenization_typeInstance, & !< instance of particular type of each homogenization
thermal_typeInstance, & !< instance of particular type of each thermal transport
damage_typeInstance !< instance of particular type of each nonlocal damage
real(pReal), dimension(:), allocatable, public, protected :: &
thermal_initialT
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable, public, protected :: &
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable :: &
thermal_type !< thermal transport model
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable, public, protected :: &
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable :: &
damage_type !< nonlocal damage model
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable, public, protected :: &
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable :: &
homogenization_type !< type of each homogenization
type, private :: tNumerics_damage
@ -95,12 +87,11 @@ module homogenization
module subroutine damage_init
end subroutine damage_init
module subroutine mechanical_partition(subF,ip,el)
module subroutine mechanical_partition(subF,ce)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce
end subroutine mechanical_partition
module subroutine thermal_partition(ce)
@ -115,37 +106,31 @@ module homogenization
integer, intent(in) :: ip,el
end subroutine thermal_homogenize
module subroutine mechanical_homogenize(dt,ip,el)
module subroutine mechanical_homogenize(dt,ce)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce !< cell
end subroutine mechanical_homogenize
module subroutine mechanical_results(group_base,h)
module subroutine mechanical_results(group_base,ho)
character(len=*), intent(in) :: group_base
integer, intent(in) :: h
integer, intent(in) :: ho
end subroutine mechanical_results
module function mechanical_updateState(subdt,subF,ip,el) result(doneAndHappy)
module function mechanical_updateState(subdt,subF,ce) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce !< cell
logical, dimension(2) :: doneAndHappy
end function mechanical_updateState
module function thermal_conduction_getConductivity(ip,el) result(K)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
module function thermal_conduction_getConductivity(ce) result(K)
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: K
end function thermal_conduction_getConductivity
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
@ -173,48 +158,37 @@ module homogenization
real(pReal) :: T
end function homogenization_thermal_T
module subroutine thermal_conduction_getSource(Tdot, ip,el)
module subroutine thermal_conduction_getSource(Tdot, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ip, &
el
real(pReal), intent(out) :: Tdot
end subroutine thermal_conduction_getSource
module function damage_nonlocal_getMobility(ip,el) result(M)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
module function damage_nonlocal_getMobility(ce) result(M)
integer, intent(in) :: ce
real(pReal) :: M
end function damage_nonlocal_getMobility
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
real(pReal) :: &
phiDot, dPhiDot_dPhi
end subroutine damage_nonlocal_getSourceAndItsTangent
module subroutine damage_nonlocal_putNonLocalDamage(phi,ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
module subroutine damage_nonlocal_putNonLocalDamage(phi,ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
end subroutine damage_nonlocal_putNonLocalDamage
module subroutine damage_nonlocal_results(homog,group)
integer, intent(in) :: homog
module subroutine damage_nonlocal_results(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine damage_nonlocal_results
end interface
public :: &
@ -257,21 +231,18 @@ subroutine homogenization_init()
allocate(homogState (size(material_name_homogenization)))
allocate(damageState_h (size(material_name_homogenization)))
call material_parseHomogenization
call material_parseHomogenization()
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10)
num%nMPstate = num_homogGeneric%get_asInt('nMPstate',defaultVal=10)
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
call mechanical_init(num_homog)
call thermal_init()
call damage_init()
call damage_nonlocal_init
call damage_nonlocal_init()
end subroutine homogenization_init
@ -318,7 +289,7 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
if (.not. doneAndHappy(1)) then
call mechanical_partition(homogenization_F(1:3,1:3,ce),ip,el)
call mechanical_partition(homogenization_F(1:3,1:3,ce),ce)
converged = .true.
do co = 1, myNgrains
converged = converged .and. crystallite_stress(dt,co,ip,el)
@ -327,7 +298,7 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
if (.not. converged) then
doneAndHappy = [.true.,.false.]
else
doneAndHappy = mechanical_updateState(dt,homogenization_F(1:3,1:3,ce),ip,el)
doneAndHappy = mechanical_updateState(dt,homogenization_F(1:3,1:3,ce),ce)
converged = all(doneAndHappy)
endif
endif
@ -341,7 +312,7 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
enddo
!$OMP END DO
if (.not. terminallyIll ) then
if (.not. terminallyIll) then
!$OMP DO PRIVATE(ho,ph,ce)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
if (terminallyIll) continue
@ -356,20 +327,21 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
terminallyIll = .true. ! ...and kills all others
endif
call thermal_homogenize(ip,el)
enddo
call thermal_homogenize(ip,el)
enddo
enddo
!$OMP END DO
!$OMP DO PRIVATE(ho)
!$OMP DO PRIVATE(ho,ce)
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ip,el)
enddo
call mechanical_homogenize(dt,ip,el)
call mechanical_homogenize(dt,ce)
enddo IpLooping3
enddo elementLooping3
!$OMP END DO
@ -527,26 +499,25 @@ end subroutine damage_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized non local damage diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function damage_nonlocal_getDiffusion(ip,el)
function damage_nonlocal_getDiffusion(ce)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: &
damage_nonlocal_getDiffusion
integer :: &
homog, &
grain
ho, &
co
homog = material_homogenizationAt(el)
ho = material_homogenizationAt2(ce)
damage_nonlocal_getDiffusion = 0.0_pReal
do grain = 1, homogenization_Nconstituents(homog)
do co = 1, homogenization_Nconstituents(ho)
damage_nonlocal_getDiffusion = damage_nonlocal_getDiffusion + &
crystallite_push33ToRef(grain,ip,el,lattice_D(1:3,1:3,material_phaseAt(grain,el)))
crystallite_push33ToRef(co,ce,lattice_D(1:3,1:3,material_phaseAt2(co,ce)))
enddo
damage_nonlocal_getDiffusion = &
num_damage%charLength**2*damage_nonlocal_getDiffusion/real(homogenization_Nconstituents(homog),pReal)
num_damage%charLength**2*damage_nonlocal_getDiffusion/real(homogenization_Nconstituents(ho),pReal)
end function damage_nonlocal_getDiffusion
@ -571,10 +542,6 @@ subroutine material_parseHomogenization
allocate(homogenization_type(size(material_name_homogenization)), source=HOMOGENIZATION_undefined_ID)
allocate(thermal_type(size(material_name_homogenization)), source=THERMAL_isothermal_ID)
allocate(damage_type (size(material_name_homogenization)), source=DAMAGE_none_ID)
allocate(homogenization_typeInstance(size(material_name_homogenization)), source=0)
allocate(thermal_typeInstance(size(material_name_homogenization)), source=0)
allocate(damage_typeInstance(size(material_name_homogenization)), source=0)
allocate(thermal_initialT(size(material_name_homogenization)), source=300.0_pReal)
do h=1, size(material_name_homogenization)
homog => material_homogenization%get(h)
@ -590,28 +557,20 @@ subroutine material_parseHomogenization
call IO_error(500,ext_msg=homogMech%get_asString('type'))
end select
homogenization_typeInstance(h) = count(homogenization_type==homogenization_type(h))
if(homog%contains('thermal')) then
if (homog%contains('thermal')) then
homogThermal => homog%get('thermal')
thermal_initialT(h) = homogThermal%get_asFloat('T_0',defaultVal=300.0_pReal)
select case (homogThermal%get_asString('type'))
case('isothermal')
thermal_type(h) = THERMAL_isothermal_ID
case('conduction')
case('pass')
thermal_type(h) = THERMAL_conduction_ID
case default
call IO_error(500,ext_msg=homogThermal%get_asString('type'))
end select
endif
if(homog%contains('damage')) then
if (homog%contains('damage')) then
homogDamage => homog%get('damage')
select case (homogDamage%get_asString('type'))
case('none')
damage_type(h) = DAMAGE_none_ID
case('nonlocal')
case('pass')
damage_type(h) = DAMAGE_nonlocal_ID
case default
call IO_error(500,ext_msg=homogDamage%get_asString('type'))
@ -619,12 +578,6 @@ subroutine material_parseHomogenization
endif
enddo
do h=1, size(material_name_homogenization)
homogenization_typeInstance(h) = count(homogenization_type(1:h) == homogenization_type(h))
thermal_typeInstance(h) = count(thermal_type (1:h) == thermal_type (h))
damage_typeInstance(h) = count(damage_type (1:h) == damage_type (h))
enddo
end subroutine material_parseHomogenization

View File

@ -85,22 +85,20 @@ end subroutine damage_partition
!--------------------------------------------------------------------------------------------------
!> @brief Returns homogenized nonlocal damage mobility
!--------------------------------------------------------------------------------------------------
module function damage_nonlocal_getMobility(ip,el) result(M)
module function damage_nonlocal_getMobility(ce) result(M)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
integer :: &
co
real(pReal) :: M
M = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
M = M + lattice_M(material_phaseAt(co,el))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
M = M + lattice_M(material_phaseAt2(co,ce))
enddo
M = M/real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
M = M/real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function damage_nonlocal_getMobility
@ -108,11 +106,9 @@ end function damage_nonlocal_getMobility
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized damage driving forces
!--------------------------------------------------------------------------------------------------
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ce)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
real(pReal) :: &
@ -121,9 +117,9 @@ module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, p
phiDot = 0.0_pReal
dPhiDot_dPhi = 0.0_pReal
call phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ip, el)
phiDot = phiDot/real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
dPhiDot_dPhi = dPhiDot_dPhi/real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
call phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ce)
phiDot = phiDot/real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
dPhiDot_dPhi = dPhiDot_dPhi/real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end subroutine damage_nonlocal_getSourceAndItsTangent
@ -131,20 +127,18 @@ end subroutine damage_nonlocal_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief updated nonlocal damage field with solution from damage phase field PDE
!--------------------------------------------------------------------------------------------------
module subroutine damage_nonlocal_putNonLocalDamage(phi,ip,el)
module subroutine damage_nonlocal_putNonLocalDamage(phi,ce)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
integer :: &
homog, &
offset
ho, &
me
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
damagestate_h(homog)%state(1,offset) = phi
ho = material_homogenizationAt2(ce)
me = material_homogenizationMemberAt2(ce)
damagestate_h(ho)%state(1,me) = phi
end subroutine damage_nonlocal_putNonLocalDamage
@ -152,18 +146,18 @@ end subroutine damage_nonlocal_putNonLocalDamage
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
module subroutine damage_nonlocal_results(homog,group)
module subroutine damage_nonlocal_results(ho,group)
integer, intent(in) :: homog
integer, intent(in) :: ho
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
associate(prm => param(ho))
outputsLoop: do o = 1,size(prm%output)
select case(prm%output(o))
case ('phi')
call results_writeDataset(group,damagestate_h(homog)%state(1,:),prm%output(o),&
call results_writeDataset(group,damagestate_h(ho)%state(1,:),prm%output(o),&
'damage indicator','-')
end select
enddo outputsLoop

View File

@ -24,35 +24,34 @@ submodule(homogenization) mechanical
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
end subroutine mechanical_isostrain_partitionDeformation
module subroutine mechanical_RGC_partitionDeformation(F,avgF,instance,of)
module subroutine mechanical_RGC_partitionDeformation(F,avgF,ce)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
integer, intent(in) :: &
instance, &
of
ce
end subroutine mechanical_RGC_partitionDeformation
module subroutine mechanical_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
module subroutine mechanical_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ho)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
integer, intent(in) :: ho
end subroutine mechanical_isostrain_averageStressAndItsTangent
module subroutine mechanical_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
module subroutine mechanical_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ho)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
integer, intent(in) :: ho
end subroutine mechanical_RGC_averageStressAndItsTangent
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAndHappy)
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
@ -61,13 +60,12 @@ submodule(homogenization) mechanical
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ce !< cell
end function mechanical_RGC_updateState
module subroutine mechanical_RGC_results(instance,group)
integer, intent(in) :: instance !< homogenization instance
module subroutine mechanical_RGC_results(ho,group)
integer, intent(in) :: ho !< homogenization type
character(len=*), intent(in) :: group !< group name in HDF5 file
end subroutine mechanical_RGC_results
@ -104,19 +102,18 @@ end subroutine mechanical_init
!--------------------------------------------------------------------------------------------------
!> @brief Partition F onto the individual constituents.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_partition(subF,ip,el)
module subroutine mechanical_partition(subF,ce)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce
integer :: co
real(pReal), dimension (3,3,homogenization_Nconstituents(material_homogenizationAt(el))) :: Fs
real(pReal), dimension (3,3,homogenization_Nconstituents(material_homogenizationAt2(ce))) :: Fs
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
chosenHomogenization: select case(homogenization_type(material_homogenizationAt2(ce)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
Fs(1:3,1:3,1) = subF
@ -125,12 +122,12 @@ module subroutine mechanical_partition(subF,ip,el)
call mechanical_isostrain_partitionDeformation(Fs,subF)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mechanical_RGC_partitionDeformation(Fs,subF,ip,el)
call mechanical_RGC_partitionDeformation(Fs,subF,ce)
end select chosenHomogenization
do co = 1,homogenization_Nconstituents(material_homogenizationAt(el))
call phase_mechanical_setF(Fs(1:3,1:3,co),co,ip,el)
do co = 1,homogenization_Nconstituents(material_homogenizationAt2(ce))
call phase_mechanical_setF(Fs(1:3,1:3,co),co,ce)
enddo
@ -140,46 +137,43 @@ end subroutine mechanical_partition
!--------------------------------------------------------------------------------------------------
!> @brief Average P and dPdF from the individual constituents.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_homogenize(dt,ip,el)
module subroutine mechanical_homogenize(dt,ce)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer, intent(in) :: ce
integer :: co,ce
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
ce = (el-1)* discretization_nIPs + ip
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
chosenHomogenization: select case(homogenization_type(material_homogenizationAt2(ce)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
homogenization_P(1:3,1:3,ce) = phase_mechanical_getP(1,ip,el)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = phase_mechanical_dPdF(dt,1,ip,el)
homogenization_P(1:3,1:3,ce) = phase_mechanical_getP(1,ce)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = phase_mechanical_dPdF(dt,1,ce)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ip,el)
Ps(:,:,co) = phase_mechanical_getP(co,ip,el)
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ce)
Ps(:,:,co) = phase_mechanical_getP(co,ce)
enddo
call mechanical_isostrain_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
Ps,dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
material_homogenizationAt2(ce))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ip,el)
Ps(:,:,co) = phase_mechanical_getP(co,ip,el)
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ce)
Ps(:,:,co) = phase_mechanical_getP(co,ce)
enddo
call mechanical_RGC_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
Ps,dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
material_homogenizationAt2(ce))
end select chosenHomogenization
@ -190,30 +184,29 @@ end subroutine mechanical_homogenize
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
module function mechanical_updateState(subdt,subF,ip,el) result(doneAndHappy)
module function mechanical_updateState(subdt,subF,ce) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce
logical, dimension(2) :: doneAndHappy
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(subdt,co,ip,el)
Fs(:,:,co) = phase_mechanical_getF(co,ip,el)
Ps(:,:,co) = phase_mechanical_getP(co,ip,el)
if (homogenization_type(material_homogenizationAt2(ce)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(subdt,co,ce)
Fs(:,:,co) = phase_mechanical_getF(co,ce)
Ps(:,:,co) = phase_mechanical_getP(co,ce)
enddo
doneAndHappy = mechanical_RGC_updateState(Ps,Fs,subF,subdt,dPdFs,ip,el)
doneAndHappy = mechanical_RGC_updateState(Ps,Fs,subF,subdt,dPdFs,ce)
else
doneAndHappy = .true.
endif
@ -224,20 +217,20 @@ end function mechanical_updateState
!--------------------------------------------------------------------------------------------------
!> @brief Write results to file.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_results(group_base,h)
module subroutine mechanical_results(group_base,ho)
character(len=*), intent(in) :: group_base
integer, intent(in) :: h
integer, intent(in) :: ho
character(len=:), allocatable :: group
group = trim(group_base)//'/mech'
call results_closeGroup(results_addGroup(group))
select case(homogenization_type(h))
select case(homogenization_type(ho))
case(HOMOGENIZATION_rgc_ID)
call mechanical_RGC_results(homogenization_typeInstance(h),group)
call mechanical_RGC_results(ho,group)
end select

View File

@ -77,8 +77,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
num_homogMech !< pointer to mechanical homogenization numerics data
integer :: &
Ninstances, &
h, &
ho, &
Nmaterialpoints, &
sizeState, nIntFaceTot
@ -90,8 +89,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
print'(/,a)', ' <<<+- homogenization:mechanical:RGC init -+>>>'
Ninstances = count(homogenization_type == HOMOGENIZATION_RGC_ID)
print'(a,i2)', ' # instances: ',Ninstances; flush(IO_STDOUT)
print'(a,i2)', ' # instances: ',count(homogenization_type == HOMOGENIZATION_RGC_ID); flush(IO_STDOUT)
print*, 'Tjahjanto et al., International Journal of Material Forming 2(1):939942, 2009'
print*, 'https://doi.org/10.1007/s12289-009-0619-1'//IO_EOL
@ -101,10 +99,11 @@ module subroutine mechanical_RGC_init(num_homogMech)
allocate(param(Ninstances))
allocate(state(Ninstances))
allocate(state0(Ninstances))
allocate(dependentState(Ninstances))
material_homogenization => config_material%get('homogenization')
allocate(param(material_homogenization%length))
allocate(state(material_homogenization%length))
allocate(state0(material_homogenization%length))
allocate(dependentState(material_homogenization%length))
num_RGC => num_homogMech%get('RGC',defaultVal=emptyDict)
@ -137,15 +136,14 @@ module subroutine mechanical_RGC_init(num_homogMech)
if (num%volDiscrPow <= 0.0_pReal) call IO_error(301,ext_msg='volDiscrPw_RGC')
material_homogenization => config_material%get('homogenization')
do h = 1, size(homogenization_type)
if (homogenization_type(h) /= HOMOGENIZATION_RGC_ID) cycle
homog => material_homogenization%get(h)
do ho = 1, size(homogenization_type)
if (homogenization_type(ho) /= HOMOGENIZATION_RGC_ID) cycle
homog => material_homogenization%get(ho)
homogMech => homog%get('mechanics')
associate(prm => param(homogenization_typeInstance(h)), &
stt => state(homogenization_typeInstance(h)), &
st0 => state0(homogenization_typeInstance(h)), &
dst => dependentState(homogenization_typeInstance(h)))
associate(prm => param(ho), &
stt => state(ho), &
st0 => state0(ho), &
dst => dependentState(ho))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogMech)
@ -154,7 +152,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
#endif
prm%N_constituents = homogMech%get_asInts('cluster_size',requiredSize=3)
if (homogenization_Nconstituents(h) /= product(prm%N_constituents)) &
if (homogenization_Nconstituents(ho) /= product(prm%N_constituents)) &
call IO_error(211,ext_msg='N_constituents (mechanical_RGC)')
prm%xi_alpha = homogMech%get_asFloat('xi_alpha')
@ -163,18 +161,18 @@ module subroutine mechanical_RGC_init(num_homogMech)
prm%D_alpha = homogMech%get_asFloats('D_alpha', requiredSize=3)
prm%a_g = homogMech%get_asFloats('a_g', requiredSize=3)
Nmaterialpoints = count(material_homogenizationAt == h)
Nmaterialpoints = count(material_homogenizationAt == ho)
nIntFaceTot = 3*( (prm%N_constituents(1)-1)*prm%N_constituents(2)*prm%N_constituents(3) &
+ prm%N_constituents(1)*(prm%N_constituents(2)-1)*prm%N_constituents(3) &
+ prm%N_constituents(1)*prm%N_constituents(2)*(prm%N_constituents(3)-1))
sizeState = nIntFaceTot
homogState(h)%sizeState = sizeState
allocate(homogState(h)%state0 (sizeState,Nmaterialpoints), source=0.0_pReal)
allocate(homogState(h)%state (sizeState,Nmaterialpoints), source=0.0_pReal)
homogState(ho)%sizeState = sizeState
allocate(homogState(ho)%state0 (sizeState,Nmaterialpoints), source=0.0_pReal)
allocate(homogState(ho)%state (sizeState,Nmaterialpoints), source=0.0_pReal)
stt%relaxationVector => homogState(h)%state(1:nIntFaceTot,:)
st0%relaxationVector => homogState(h)%state0(1:nIntFaceTot,:)
stt%relaxationVector => homogState(ho)%state(1:nIntFaceTot,:)
st0%relaxationVector => homogState(ho)%state0(1:nIntFaceTot,:)
allocate(dst%volumeDiscrepancy( Nmaterialpoints), source=0.0_pReal)
allocate(dst%relaxationRate_avg( Nmaterialpoints), source=0.0_pReal)
@ -183,7 +181,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
!--------------------------------------------------------------------------------------------------
! assigning cluster orientations
dependentState(homogenization_typeInstance(h))%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints)
dependentState(ho)%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints)
!dst%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints) ifort version 18.0.1 crashes (for whatever reason)
end associate
@ -196,22 +194,23 @@ end subroutine mechanical_RGC_init
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_RGC_partitionDeformation(F,avgF,instance,of)
module subroutine mechanical_RGC_partitionDeformation(F,avgF,ce)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned F per grain
real(pReal), dimension (3,3), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
instance, &
of
ce
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j
integer :: iGrain,iFace,i,j,ho,me
associate(prm => param(instance))
associate(prm => param(material_homogenizationAt2(ce)))
ho = material_homogenizationAt2(ce)
me = material_homogenizationMemberAt2(ce)
!--------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
F = 0.0_pReal
@ -219,8 +218,8 @@ module subroutine mechanical_RGC_partitionDeformation(F,avgF,instance,of)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! identifying 6 interfaces of each grain
aVect = relaxationVector(intFace,instance,of) ! get the relaxation vectors for each interface from global relaxation vector array
nVect = interfaceNormal(intFace,instance,of)
aVect = relaxationVector(intFace,ho,me) ! get the relaxation vectors for each interface from global relaxation vector array
nVect = interfaceNormal(intFace,ho,me)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation
enddo
@ -236,7 +235,7 @@ end subroutine mechanical_RGC_partitionDeformation
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result
!--------------------------------------------------------------------------------------------------
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAndHappy)
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
@ -245,12 +244,11 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ce !< cell
integer, dimension(4) :: intFaceN,intFaceP,faceID
integer, dimension(3) :: nGDim,iGr3N,iGr3P
integer :: instance,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain, of
integer :: ho,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain, me
real(pReal), dimension(3,3,size(P,3)) :: R,pF,pR,D,pD
real(pReal), dimension(3,size(P,3)) :: NN,devNull
real(pReal), dimension(3) :: normP,normN,mornP,mornN
@ -264,10 +262,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
return
endif zeroTimeStep
instance = homogenization_typeInstance(material_homogenizationAt(el))
of = material_homogenizationMemberAt(ip,el)
ho = material_homogenizationAt2(ce)
associate(stt => state(instance), st0 => state0(instance), dst => dependentState(instance), prm => param(instance))
me = material_homogenizationMemberAt2(ce)
associate(stt => state(ho), st0 => state0(ho), dst => dependentState(ho), prm => param(ho))
!--------------------------------------------------------------------------------------------------
! get the dimension of the cluster (grains and interfaces)
@ -281,36 +279,36 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! allocate the size of the global relaxation arrays/jacobian matrices depending on the size of the cluster
allocate(resid(3*nIntFaceTot), source=0.0_pReal)
allocate(tract(nIntFaceTot,3), source=0.0_pReal)
relax = stt%relaxationVector(:,of)
drelax = stt%relaxationVector(:,of) - st0%relaxationVector(:,of)
relax = stt%relaxationVector(:,me)
drelax = stt%relaxationVector(:,me) - st0%relaxationVector(:,me)
!--------------------------------------------------------------------------------------------------
! computing interface mismatch and stress penalty tensor for all interfaces of all grains
call stressPenalty(R,NN,avgF,F,ip,el,instance,of)
call stressPenalty(R,NN,avgF,F,ho,me)
!--------------------------------------------------------------------------------------------------
! calculating volume discrepancy and stress penalty related to overall volume discrepancy
call volumePenalty(D,dst%volumeDiscrepancy(of),avgF,F,nGrain,instance,of)
call volumePenalty(D,dst%volumeDiscrepancy(me),avgF,F,nGrain)
!------------------------------------------------------------------------------------------------
! computing the residual stress from the balance of traction at all (interior) interfaces
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
faceID = interface1to4(iNum,param(ho)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N)
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ho,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P)
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ho,me)
!--------------------------------------------------------------------------------------------------
! compute the residual of traction at the interface (in local system, 4-dimensional index)
@ -338,9 +336,9 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
if (residMax < num%rtol*stresMax .or. residMax < num%atol) then
doneAndHappy = .true.
dst%mismatch(1:3,of) = sum(NN,2)/real(nGrain,pReal)
dst%relaxationRate_avg(of) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(of) = maxval(abs(drelax))/dt
dst%mismatch(1:3,me) = sum(NN,2)/real(nGrain,pReal)
dst%relaxationRate_avg(me) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(me) = maxval(abs(drelax))/dt
return
@ -359,18 +357,18 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! ... of the constitutive stress tangent, assembled from dPdF or material constitutive model "smatrix"
allocate(smatrix(3*nIntFaceTot,3*nIntFaceTot), source=0.0_pReal)
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%N_constituents) ! assembling of local dPdF into global Jacobian matrix
faceID = interface1to4(iNum,param(ho)%N_constituents) ! assembling of local dPdF into global Jacobian matrix
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate into global grain ID
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate into global grain ID
intFaceN = getInterface(2*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ho,me)
do iFace = 1,6
intFaceN = getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface
mornN = interfaceNormal(intFaceN,instance,of)
iMun = interface4to1(intFaceN,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
mornN = interfaceNormal(intFaceN,ho,me)
iMun = interface4to1(intFaceN,param(ho)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
@ -385,13 +383,13 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate sytem
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate into global grain ID
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate into global grain ID
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identifying the connecting interface in local coordinate system
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ho,me)
do iFace = 1,6
intFaceP = getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface
mornP = interfaceNormal(intFaceP,instance,of)
iMun = interface4to1(intFaceP,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
mornP = interfaceNormal(intFaceP,ho,me)
iMun = interface4to1(intFaceP,param(ho)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
@ -411,31 +409,31 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
do ipert = 1,3*nIntFaceTot
p_relax = relax
p_relax(ipert) = relax(ipert) + num%pPert ! perturb the relaxation vector
stt%relaxationVector(:,of) = p_relax
call grainDeformation(pF,avgF,instance,of) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ip,el,instance,of) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain,instance,of) ! stress penalty due to volume discrepancy from perturbed state
stt%relaxationVector(:,me) = p_relax
call grainDeformation(pF,avgF,ho,me) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ho,me) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain) ! stress penalty due to volume discrepancy from perturbed state
!--------------------------------------------------------------------------------------------------
! computing the global stress residual array from the perturbed state
p_resid = 0.0_pReal
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
faceID = interface1to4(iNum,param(ho)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identify the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N) ! identify the interface ID of the grain
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ho,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identify the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identify the interface ID of the grain
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ho,me)
!--------------------------------------------------------------------------------------------------
! compute the residual stress (contribution of mismatch and volume penalties) from perturbed state
@ -475,11 +473,11 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
do i = 1,3*nIntFaceTot;do j = 1,3*nIntFaceTot
drelax(i) = drelax(i) - jnverse(i,j)*resid(j) ! Calculate the correction for the state variable
enddo; enddo
stt%relaxationVector(:,of) = relax + drelax ! Updateing the state variable for the next iteration
stt%relaxationVector(:,me) = relax + drelax ! Updateing the state variable for the next iteration
if (any(abs(drelax) > num%maxdRelax)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large
doneAndHappy = [.true.,.false.]
!$OMP CRITICAL (write2out)
print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback'
print'(a,i3,a,i3,a)',' RGC_updateState: enforces cutback'
print'(a,e15.8)',' due to large relaxation change = ',maxval(abs(drelax))
flush(IO_STDOUT)
!$OMP END CRITICAL (write2out)
@ -491,14 +489,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to deformation mismatch
!------------------------------------------------------------------------------------------------
subroutine stressPenalty(rPen,nMis,avgF,fDef,ip,el,instance,of)
subroutine stressPenalty(rPen,nMis,avgF,fDef,ho,me)
real(pReal), dimension (:,:,:), intent(out) :: rPen !< stress-like penalty
real(pReal), dimension (:,:), intent(out) :: nMis !< total amount of mismatch
real(pReal), dimension (:,:,:), intent(in) :: fDef !< deformation gradients
real(pReal), dimension (3,3), intent(in) :: avgF !< initial effective stretch tensor
integer, intent(in) :: ip,el,instance,of
integer, intent(in) :: ho, me
integer, dimension (4) :: intFace
integer, dimension (3) :: iGrain3,iGNghb3,nGDim
@ -510,7 +508,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
nDefToler = 1.0e-10_pReal, &
b = 2.5e-10_pReal ! Length of Burgers vector
nGDim = param(instance)%N_constituents
nGDim = param(ho)%N_constituents
rPen = 0.0_pReal
nMis = 0.0_pReal
@ -518,27 +516,26 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! get the correction factor the modulus of penalty stress representing the evolution of area of
! the interfaces due to deformations
surfCorr = surfaceCorrection(avgF,instance,of)
associate(prm => param(instance))
surfCorr = surfaceCorrection(avgF,ho,me)
associate(prm => param(ho))
!-----------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
grainLoop: do iGrain = 1,product(prm%N_constituents)
muGrain = equivalentMu(iGrain,ip,el)
muGrain = equivalentMu(iGrain,ce)
iGrain3 = grain1to3(iGrain,prm%N_constituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
interfaceLoop: do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain
nVect = interfaceNormal(intFace,instance,of)
nVect = interfaceNormal(intFace,ho,me)
iGNghb3 = iGrain3 ! identify the neighboring grain across the interface
iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) &
+ int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal))
where(iGNghb3 < 1) iGNghb3 = nGDim
where(iGNghb3 >nGDim) iGNghb3 = 1
iGNghb = grain3to1(iGNghb3,prm%N_constituents) ! get the ID of the neighboring grain
muGNghb = equivalentMu(iGNghb,ip,el)
muGNghb = equivalentMu(iGNghb,ce)
gDef = 0.5_pReal*(fDef(1:3,1:3,iGNghb) - fDef(1:3,1:3,iGrain)) ! difference/jump in deformation gradeint across the neighbor
!-------------------------------------------------------------------------------------------
@ -577,7 +574,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to volume discrepancy
!------------------------------------------------------------------------------------------------
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain,instance,of)
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain)
real(pReal), dimension (:,:,:), intent(out) :: vPen ! stress-like penalty due to volume
real(pReal), intent(out) :: vDiscrep ! total volume discrepancy
@ -585,9 +582,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
real(pReal), dimension (:,:,:), intent(in) :: fDef ! deformation gradients
real(pReal), dimension (3,3), intent(in) :: fAvg ! overall deformation gradient
integer, intent(in) :: &
Ngrain, &
instance, &
of
Ngrain
real(pReal), dimension(size(vPen,3)) :: gVol
integer :: i
@ -617,14 +612,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!> @brief compute the correction factor accouted for surface evolution (area change) due to
! deformation
!--------------------------------------------------------------------------------------------------
function surfaceCorrection(avgF,instance,of)
function surfaceCorrection(avgF,ho,me)
real(pReal), dimension(3) :: surfaceCorrection
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
integer, intent(in) :: &
instance, &
of
ho, &
me
real(pReal), dimension(3,3) :: invC
real(pReal), dimension(3) :: nVect
real(pReal) :: detF
@ -635,7 +630,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
surfaceCorrection = 0.0_pReal
do iBase = 1,3
nVect = interfaceNormal([iBase,1,1,1],instance,of)
nVect = interfaceNormal([iBase,1,1,1],ho,me)
do i = 1,3; do j = 1,3
surfaceCorrection(iBase) = surfaceCorrection(iBase) + invC(i,j)*nVect(i)*nVect(j) ! compute the component of (the inverse of) the stretch in the direction of the normal
enddo; enddo
@ -648,17 +643,16 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!-------------------------------------------------------------------------------------------------
!> @brief compute the equivalent shear and bulk moduli from the elasticity tensor
!-------------------------------------------------------------------------------------------------
real(pReal) function equivalentMu(grainID,ip,el)
real(pReal) function equivalentMu(grainID,ce)
integer, intent(in) :: &
grainID,&
ip, & !< integration point number
el !< element number
ce
real(pReal), dimension(6,6) :: C
C = phase_homogenizedC(material_phaseAt(grainID,el),material_phaseMemberAt(grainID,ip,el))
C = phase_homogenizedC(material_phaseAt2(grainID,ce),material_phaseMemberAt2(grainID,ce))
equivalentMu = lattice_equivalent_mu(C,'voigt')
end function equivalentMu
@ -668,14 +662,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!> @brief calculating the grain deformation gradient (the same with
! homogenization_RGC_partitionDeformation, but used only for perturbation scheme)
!-------------------------------------------------------------------------------------------------
subroutine grainDeformation(F, avgF, instance, of)
subroutine grainDeformation(F, avgF, ho, me)
real(pReal), dimension(:,:,:), intent(out) :: F !< partitioned F per grain
real(pReal), dimension(:,:), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
instance, &
of
ho, &
me
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
@ -685,15 +679,15 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!-----------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
associate(prm => param(instance))
associate (prm => param(ho))
F = 0.0_pReal
do iGrain = 1,product(prm%N_constituents)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3)
aVect = relaxationVector(intFace,instance,of)
nVect = interfaceNormal(intFace,instance,of)
aVect = relaxationVector(intFace,ho,me)
nVect = interfaceNormal(intFace,ho,me)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations
enddo
@ -710,17 +704,17 @@ end function mechanical_RGC_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
module subroutine mechanical_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ho)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
integer, intent(in) :: ho
avgP = sum(P,3) /real(product(param(instance)%N_constituents),pReal)
dAvgPdAvgF = sum(dPdF,5)/real(product(param(instance)%N_constituents),pReal)
avgP = sum(P,3) /real(product(param(ho)%N_constituents),pReal)
dAvgPdAvgF = sum(dPdF,5)/real(product(param(ho)%N_constituents),pReal)
end subroutine mechanical_RGC_averageStressAndItsTangent
@ -728,14 +722,14 @@ end subroutine mechanical_RGC_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_RGC_results(instance,group)
module subroutine mechanical_RGC_results(ho,group)
integer, intent(in) :: instance
integer, intent(in) :: ho
character(len=*), intent(in) :: group
integer :: o
associate(stt => state(instance), dst => dependentState(instance), prm => param(instance))
associate(stt => state(ho), dst => dependentState(ho), prm => param(ho))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('M')
@ -760,11 +754,11 @@ end subroutine mechanical_RGC_results
!--------------------------------------------------------------------------------------------------
!> @brief collect relaxation vectors of an interface
!--------------------------------------------------------------------------------------------------
pure function relaxationVector(intFace,instance,of)
pure function relaxationVector(intFace,ho,me)
real(pReal), dimension (3) :: relaxationVector
integer, intent(in) :: instance,of
integer, intent(in) :: ho,me
integer, dimension(4), intent(in) :: intFace !< set of interface ID in 4D array (normal and position)
integer :: iNum
@ -772,29 +766,35 @@ pure function relaxationVector(intFace,instance,of)
!--------------------------------------------------------------------------------------------------
! collect the interface relaxation vector from the global state array
iNum = interface4to1(intFace,param(instance)%N_constituents) ! identify the position of the interface in global state array
associate (prm => param(ho), &
stt => state(ho))
iNum = interface4to1(intFace,prm%N_constituents) ! identify the position of the interface in global state array
if (iNum > 0) then
relaxationVector = state(instance)%relaxationVector((3*iNum-2):(3*iNum),of)
relaxationVector = stt%relaxationVector((3*iNum-2):(3*iNum),me)
else
relaxationVector = 0.0_pReal
endif
end associate
end function relaxationVector
!--------------------------------------------------------------------------------------------------
!> @brief identify the normal of an interface
!--------------------------------------------------------------------------------------------------
pure function interfaceNormal(intFace,instance,of)
pure function interfaceNormal(intFace,ho,me)
real(pReal), dimension(3) :: interfaceNormal
integer, dimension(4), intent(in) :: intFace !< interface ID in 4D array (normal and position)
integer, intent(in) :: &
instance, &
of
ho, &
me
integer :: nPos
associate (dst => dependentState(ho))
!--------------------------------------------------------------------------------------------------
! get the normal of the interface, identified from the value of intFace(1)
@ -802,7 +802,9 @@ pure function interfaceNormal(intFace,instance,of)
nPos = abs(intFace(1)) ! identify the position of the interface in global state array
interfaceNormal(nPos) = real(intFace(1)/abs(intFace(1)),pReal) ! get the normal vector w.r.t. cluster axis
interfaceNormal = matmul(dependentState(instance)%orientation(1:3,1:3,of),interfaceNormal) ! map the normal vector into sample coordinate system (basis)
interfaceNormal = matmul(dst%orientation(1:3,1:3,me),interfaceNormal) ! map the normal vector into sample coordinate system (basis)
end associate
end function interfaceNormal

View File

@ -29,7 +29,6 @@ contains
module subroutine mechanical_isostrain_init
integer :: &
Ninstances, &
h, &
Nmaterialpoints
class(tNode), pointer :: &
@ -39,17 +38,16 @@ module subroutine mechanical_isostrain_init
print'(/,a)', ' <<<+- homogenization:mechanical:isostrain init -+>>>'
Ninstances = count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)
print'(a,i2)', ' # instances: ',Ninstances; flush(IO_STDOUT)
allocate(param(Ninstances)) ! one container of parameters per instance
print'(a,i2)', ' # instances: ',count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID); flush(IO_STDOUT)
material_homogenization => config_material%get('homogenization')
allocate(param(material_homogenization%length)) ! one container of parameters per homog
do h = 1, size(homogenization_type)
if (homogenization_type(h) /= HOMOGENIZATION_ISOSTRAIN_ID) cycle
homog => material_homogenization%get(h)
homogMech => homog%get('mechanics')
associate(prm => param(homogenization_typeInstance(h)))
associate(prm => param(h))
prm%N_constituents = homogenization_Nconstituents(h)
select case(homogMech%get_asString('mapping',defaultVal = 'sum'))
@ -90,16 +88,16 @@ end subroutine mechanical_isostrain_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
module subroutine mechanical_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ho)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
integer, intent(in) :: ho
associate(prm => param(instance))
associate(prm => param(ho))
select case (prm%mapping)
case (parallel_ID)

View File

@ -44,7 +44,7 @@ module subroutine thermal_init()
allocate(current(configHomogenizations%length))
do ho = 1, configHomogenizations%length
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=thermal_initialT(ho))
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=300.0_pReal)
allocate(current(ho)%dot_T(count(material_homogenizationAt2==ho)), source=0.0_pReal)
configHomogenization => configHomogenizations%get(ho)
associate(prm => param(ho))
@ -99,24 +99,21 @@ end subroutine thermal_homogenize
!--------------------------------------------------------------------------------------------------
!> @brief return homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getConductivity(ip,el) result(K)
module function thermal_conduction_getConductivity(ce) result(K)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: K
integer :: &
co
K = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
K = K + crystallite_push33ToRef(co,ip,el,lattice_K(:,:,material_phaseAt(co,el)))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
K = K + crystallite_push33ToRef(co,ce,lattice_K(:,:,material_phaseAt2(co,ce)))
enddo
K = K / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
K = K / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getConductivity
@ -219,11 +216,11 @@ end function homogenization_thermal_T
!--------------------------------------------------------------------------------------------------
!> @brief return heat generation rate
!--------------------------------------------------------------------------------------------------
module subroutine thermal_conduction_getSource(Tdot, ip,el)
module subroutine thermal_conduction_getSource(Tdot, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ip, &
el
real(pReal), intent(out) :: &
Tdot

View File

@ -30,7 +30,7 @@ module material
material_homogenizationAt, & !< homogenization ID of each element
material_homogenizationAt2, & !< per cell
material_homogenizationMemberAt2 !< cell
integer, dimension(:,:), allocatable, public, protected :: & ! (ip,elem)
integer, dimension(:,:), allocatable :: & ! (ip,elem)
material_homogenizationMemberAt !< position of the element within its homogenization instance
integer, dimension(:,:), allocatable, public, protected :: & ! (constituent,elem)
material_phaseAt, & !< phase ID of each element
@ -39,9 +39,6 @@ module material
integer, dimension(:,:,:), allocatable, public, protected :: & ! (constituent,IP,elem)
material_phaseMemberAt !< position of the element within its phase instance
type(Rotation), dimension(:,:,:), allocatable, public, protected :: &
material_orientation0 !< initial orientation of each grain,IP,element
public :: &
material_init
@ -125,8 +122,6 @@ subroutine material_parseMaterial
allocate(material_phaseAt2(homogenization_maxNconstituents,discretization_nIPs*discretization_Nelems),source=0)
allocate(material_phaseMemberAt2(homogenization_maxNconstituents,discretization_nIPs*discretization_Nelems),source=0)
allocate(material_orientation0(homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems))
do el = 1, discretization_Nelems
material => materials%get(discretization_materialAt(el))
constituents => material%get('constituents')
@ -153,7 +148,6 @@ subroutine material_parseMaterial
material_phaseAt2(co,ce) = material_phaseAt(co,el)
material_phaseMemberAt2(co,ce) = material_phaseMemberAt(co,ip,el)
call material_orientation0(co,ip,el)%fromQuaternion(constituent%get_asFloats('O',requiredSize=4)) ! should be done in crystallite
enddo
enddo

View File

@ -1133,6 +1133,7 @@ real(pReal) pure function math_areaTriangle(v1,v2,v3)
real(pReal), dimension (3), intent(in) :: v1,v2,v3
math_areaTriangle = 0.5_pReal * norm2(math_cross(v1-v2,v1-v3))
end function math_areaTriangle
@ -1147,11 +1148,13 @@ real(pReal) pure elemental function math_clip(a, left, right)
real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: left, right
math_clip = a
if (present(left)) math_clip = max(left,math_clip)
if (present(right)) math_clip = min(right,math_clip)
if (present(left) .and. present(right)) &
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
if (present(left) .and. present(right)) then
if(left>right) error stop 'left > right'
endif
end function math_clip
@ -1182,6 +1185,7 @@ subroutine selfTest
integer :: d
logical :: e
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) &
error stop 'math_expand [1,2,3] by [1,2,3,0] => [1,2,2,3,3,3]'

View File

@ -19,6 +19,9 @@ module phase
implicit none
private
type(Rotation), dimension(:,:,:), allocatable :: &
material_orientation0 !< initial orientation of each grain,IP,element
type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation
@ -77,8 +80,8 @@ module phase
interface
! == cleaned:begin =================================================================================
module subroutine mechanical_init(phases)
class(tNode), pointer :: phases
module subroutine mechanical_init(materials,phases)
class(tNode), pointer :: materials,phases
end subroutine mechanical_init
module subroutine damage_init
@ -117,12 +120,11 @@ module phase
end subroutine mechanical_restore
module function phase_mechanical_dPdF(dt,co,ip,el) result(dPdF)
module function phase_mechanical_dPdF(dt,co,ce) result(dPdF)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
co, & !< counter in constituent loop
ip, & !< counter in integration point loop
el !< counter in element loop
ce
real(pReal), dimension(3,3,3,3) :: dPdF
end function phase_mechanical_dPdF
@ -147,8 +149,8 @@ module phase
real(pReal), dimension(3,3) :: L_p
end function mechanical_L_p
module function phase_mechanical_getF(co,ip,el) result(F)
integer, intent(in) :: co, ip, el
module function phase_mechanical_getF(co,ce) result(F)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: F
end function phase_mechanical_getF
@ -157,8 +159,8 @@ module phase
real(pReal), dimension(3,3) :: F_e
end function mechanical_F_e
module function phase_mechanical_getP(co,ip,el) result(P)
integer, intent(in) :: co, ip, el
module function phase_mechanical_getP(co,ce) result(P)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: P
end function phase_mechanical_getP
@ -183,9 +185,9 @@ module phase
end function damage_phi
module subroutine phase_mechanical_setF(F,co,ip,el)
module subroutine phase_mechanical_setF(F,co,ce)
real(pReal), dimension(3,3), intent(in) :: F
integer, intent(in) :: co, ip, el
integer, intent(in) :: co, ce
end subroutine phase_mechanical_setF
module subroutine phase_thermal_setField(T,dot_T, co,ce)
@ -229,10 +231,8 @@ module phase
end function phase_homogenizedC
module subroutine phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
module subroutine phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi !< damage parameter
real(pReal), intent(inout) :: &
@ -342,6 +342,7 @@ subroutine phase_init
so !< counter in source loop
class (tNode), pointer :: &
debug_constitutive, &
materials, &
phases
@ -356,9 +357,10 @@ subroutine phase_init
debugConstitutive%grain = config_debug%get_asInt('grain',defaultVal = 1)
materials => config_material%get('material')
phases => config_material%get('phase')
call mechanical_init(phases)
call mechanical_init(materials,phases)
call damage_init
call thermal_init(phases)
@ -624,19 +626,20 @@ end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief Map 2nd order tensor to reference config
!--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(co,ip,el, tensor33)
function crystallite_push33ToRef(co,ce, tensor33)
real(pReal), dimension(3,3), intent(in) :: tensor33
integer, intent(in):: &
el, &
ip, &
co
co, &
ce
real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3) :: T
integer :: ph, me
T = matmul(material_orientation0(co,ip,el)%asMatrix(),transpose(math_inv33(phase_mechanical_getF(co,ip,el)))) ! ToDo: initial orientation correct?
ph = material_phaseAt2(co,ce)
me = material_phaseMemberAt2(co,ce)
T = matmul(material_orientation0(co,ph,me)%asMatrix(),transpose(math_inv33(phase_mechanical_getF(co,ce)))) ! ToDo: initial orientation correct?
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))

View File

@ -133,7 +133,7 @@ module subroutine damage_init
integer :: &
ph, & !< counter in phase loop
Nconstituents
Nmembers
class(tNode), pointer :: &
phases, &
phase, &
@ -151,10 +151,10 @@ module subroutine damage_init
do ph = 1,phases%length
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
allocate(current(ph)%phi(Nconstituents),source=1.0_pReal)
allocate(current(ph)%d_phi_d_dot_phi(Nconstituents),source=0.0_pReal)
allocate(current(ph)%phi(Nmembers),source=1.0_pReal)
allocate(current(ph)%d_phi_d_dot_phi(Nmembers),source=0.0_pReal)
phase => phases%get(ph)
sources => phase%get('damage',defaultVal=emptyList)
@ -179,11 +179,9 @@ end subroutine damage_init
!----------------------------------------------------------------------------------------------
!< @brief returns local part of nonlocal damage driving force
!----------------------------------------------------------------------------------------------
module subroutine phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ip, el)
module subroutine phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ce)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi !< damage parameter
real(pReal), intent(inout) :: &
@ -201,9 +199,9 @@ module subroutine phase_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi,
phiDot = 0.0_pReal
dPhiDot_dPhi = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
ph = material_phaseAt(co,el)
me = material_phasememberAt(co,ip,el)
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
ph = material_phaseAt2(co,ce)
me = material_phasememberAt2(co,ce)
select case(phase_source(ph))
case (DAMAGE_ISOBRITTLE_ID)

View File

@ -40,7 +40,7 @@ module function anisobrittle_init() result(mySources)
phase, &
sources, &
src
integer :: Nconstituents,p
integer :: Nmembers,p
integer, dimension(:), allocatable :: N_cl
character(len=pStringLen) :: extmsg = ''
@ -92,8 +92,8 @@ module function anisobrittle_init() result(mySources)
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit'
Nconstituents = count(material_phaseAt==p) * discretization_nIPs
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
Nmembers = count(material_phaseAt==p) * discretization_nIPs
call phase_allocateState(damageState(p),Nmembers,1,1,0)
damageState(p)%atol = src%get_asFloat('anisobrittle_atol',defaultVal=1.0e-3_pReal)
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_atol'

View File

@ -35,7 +35,7 @@ module function anisoductile_init() result(mySources)
pl, &
sources, &
src
integer :: Ninstances,Nconstituents,p
integer :: Ninstances,Nmembers,p
integer, dimension(:), allocatable :: N_sl
character(len=pStringLen) :: extmsg = ''
@ -78,8 +78,8 @@ module function anisoductile_init() result(mySources)
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (any(prm%gamma_crit < 0.0_pReal)) extmsg = trim(extmsg)//' gamma_crit'
Nconstituents=count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
Nmembers=count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nmembers,1,1,0)
damageState(p)%atol = src%get_asFloat('anisoDuctile_atol',defaultVal=1.0e-3_pReal)
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_atol'

View File

@ -31,7 +31,7 @@ module function isobrittle_init() result(mySources)
phase, &
sources, &
src
integer :: Nconstituents,p
integer :: Nmembers,p
character(len=pStringLen) :: extmsg = ''
@ -64,8 +64,8 @@ module function isobrittle_init() result(mySources)
! sanity checks
if (prm%W_crit <= 0.0_pReal) extmsg = trim(extmsg)//' W_crit'
Nconstituents = count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nconstituents,1,1,1)
Nmembers = count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nmembers,1,1,1)
damageState(p)%atol = src%get_asFloat('isoBrittle_atol',defaultVal=1.0e-3_pReal)
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isobrittle_atol'

View File

@ -33,7 +33,7 @@ module function isoductile_init() result(mySources)
phase, &
sources, &
src
integer :: Ninstances,Nconstituents,p
integer :: Ninstances,Nmembers,p
character(len=pStringLen) :: extmsg = ''
@ -68,8 +68,8 @@ module function isoductile_init() result(mySources)
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%gamma_crit <= 0.0_pReal) extmsg = trim(extmsg)//' gamma_crit'
Nconstituents=count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
Nmembers=count(material_phaseAt2==p)
call phase_allocateState(damageState(p),Nmembers,1,1,0)
damageState(p)%atol = src%get_asFloat('isoDuctile_atol',defaultVal=1.0e-3_pReal)
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isoductile_atol'

View File

@ -177,21 +177,26 @@ contains
!> @brief Initialize mechanical field related constitutive models
!> @details Initialize elasticity, plasticity and stiffness degradation models.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_init(phases)
module subroutine mechanical_init(materials,phases)
class(tNode), pointer :: &
materials, &
phases
integer :: &
el, &
ip, &
co, &
ce, &
ph, &
me, &
stiffDegradationCtr, &
Nconstituents
Nmembers
class(tNode), pointer :: &
num_crystallite, &
material, &
constituents, &
constituent, &
phase, &
mech, &
elastic, &
@ -221,23 +226,25 @@ module subroutine mechanical_init(phases)
allocate(phase_mechanical_P(phases%length))
allocate(phase_mechanical_S0(phases%length))
do ph = 1, phases%length
Nconstituents = count(material_phaseAt == ph) * discretization_nIPs
allocate(material_orientation0(homogenization_maxNconstituents,phases%length,maxVal(material_phaseMemberAt)))
allocate(phase_mechanical_Fi(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Fe(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Fp(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Li(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Li0(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_Lp(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_S(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(phase_mechanical_P(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(phase_mechanical_S0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(phase_mechanical_F(ph)%data(3,3,Nconstituents))
allocate(phase_mechanical_F0(ph)%data(3,3,Nconstituents))
do ph = 1, phases%length
Nmembers = count(material_phaseAt == ph) * discretization_nIPs
allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fp(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Li(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Li0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Lp(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_S(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_P(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_S0(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_F(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_F0(ph)%data(3,3,Nmembers))
phase => phases%get(ph)
mech => phase%get('mechanics')
@ -271,14 +278,19 @@ module subroutine mechanical_init(phases)
enddo
endif
!$OMP PARALLEL DO PRIVATE(ph,me)
do el = 1, size(material_phaseMemberAt,3); do ip = 1, size(material_phaseMemberAt,2)
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
material => materials%get(discretization_materialAt(el))
constituents => material%get('constituents')
constituent => constituents%get(co)
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
phase_mechanical_Fp0(ph)%data(1:3,1:3,me) = material_orientation0(co,ip,el)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
call material_orientation0(co,ph,me)%fromQuaternion(constituent%get_asFloats('O',requiredSize=4))
phase_mechanical_Fp0(ph)%data(1:3,1:3,me) = material_orientation0(co,ph,me)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
phase_mechanical_Fp0(ph)%data(1:3,1:3,me) = phase_mechanical_Fp0(ph)%data(1:3,1:3,me) &
/ math_det33(phase_mechanical_Fp0(ph)%data(1:3,1:3,me))**(1.0_pReal/3.0_pReal)
phase_mechanical_Fi0(ph)%data(1:3,1:3,me) = math_I3
@ -292,7 +304,6 @@ module subroutine mechanical_init(phases)
enddo
enddo; enddo
!$OMP END PARALLEL DO
! initialize plasticity
@ -342,12 +353,11 @@ end subroutine mechanical_init
!> the elastic and intermediate deformation gradients using Hooke's law
!--------------------------------------------------------------------------------------------------
subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi, co, ip, el)
Fe, Fi, ph, me)
integer, intent(in) :: &
co, & !< component-ID of integration point
ip, & !< integration point
el !< element
ph, &
me
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
@ -360,17 +370,15 @@ subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
real(pReal), dimension(3,3) :: E
real(pReal), dimension(3,3,3,3) :: C
integer :: &
ho, & !< homogenization
d, & !< counter in degradation loop
i, j, ph, me
i, j
ho = material_homogenizationAt(el)
C = math_66toSym3333(phase_homogenizedC(material_phaseAt(co,el),material_phaseMemberAt(co,ip,el)))
C = math_66toSym3333(phase_homogenizedC(ph,me))
DegradationLoop: do d = 1, phase_NstiffnessDegradations(material_phaseAt(co,el))
degradationType: select case(phase_stiffnessDegradation(d,material_phaseAt(co,el)))
DegradationLoop: do d = 1, phase_NstiffnessDegradations(ph)
degradationType: select case(phase_stiffnessDegradation(d,ph))
case (STIFFNESS_DEGRADATION_damage_ID) degradationType
C = C * phase_damage_get_phi(co,ip,el)**2
C = C * damage_phi(ph,me)**2
end select degradationType
enddo DegradationLoop
@ -528,7 +536,7 @@ function integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el) result(broken)
B = math_I3 - Delta_t*Lpguess
Fe = matmul(matmul(A,B), invFi_new)
call phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, co, ip, el)
Fe, Fi_new, ph, me)
call plastic_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ph,me)
@ -1250,13 +1258,12 @@ end subroutine mechanical_restore
!--------------------------------------------------------------------------------------------------
!> @brief Calculate tangent (dPdF).
!--------------------------------------------------------------------------------------------------
module function phase_mechanical_dPdF(dt,co,ip,el) result(dPdF)
module function phase_mechanical_dPdF(dt,co,ce) result(dPdF)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
co, & !< counter in constituent loop
ip, & !< counter in integration point loop
el !< counter in element loop
ce
real(pReal), dimension(3,3,3,3) :: dPdF
integer :: &
@ -1281,12 +1288,12 @@ module function phase_mechanical_dPdF(dt,co,ip,el) result(dPdF)
logical :: error
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
ph = material_phaseAt2(co,ce)
me = material_phaseMemberAt2(co,ce)
call phase_hooke_SandItsTangents(devNull,dSdFe,dSdFi, &
phase_mechanical_Fe(ph)%data(1:3,1:3,me), &
phase_mechanical_Fi(ph)%data(1:3,1:3,me),co,ip,el)
phase_mechanical_Fi(ph)%data(1:3,1:3,me),ph,me)
call phase_LiAndItsTangents(devNull,dLidS,dLidFi, &
phase_mechanical_S(ph)%data(1:3,1:3,me), &
phase_mechanical_Fi(ph)%data(1:3,1:3,me), &
@ -1311,7 +1318,7 @@ module function phase_mechanical_dPdF(dt,co,ip,el) result(dPdF)
enddo; enddo
call math_invert(temp_99,error,math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=el,ip=ip,g=co, &
call IO_warning(warning_ID=600, &
ext_msg='inversion error in analytic tangent calculation')
dFidS = 0.0_pReal
else
@ -1341,7 +1348,7 @@ module function phase_mechanical_dPdF(dt,co,ip,el) result(dPdF)
call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=el,ip=ip,g=co, &
call IO_warning(warning_ID=600, &
ext_msg='inversion error in analytic tangent calculation')
dSdF = rhs_3333
else
@ -1440,13 +1447,13 @@ end function mechanical_L_p
!----------------------------------------------------------------------------------------------
!< @brief Get deformation gradient (for use by homogenization)
!----------------------------------------------------------------------------------------------
module function phase_mechanical_getF(co,ip,el) result(F)
module function phase_mechanical_getF(co,ce) result(F)
integer, intent(in) :: co, ip, el
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: F
F = phase_mechanical_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el))
F = phase_mechanical_F(material_phaseAt2(co,ce))%data(1:3,1:3,material_phaseMemberAt2(co,ce))
end function phase_mechanical_getF
@ -1469,25 +1476,25 @@ end function mechanical_F_e
!----------------------------------------------------------------------------------------------
!< @brief Get second Piola-Kichhoff stress (for use by homogenization)
!----------------------------------------------------------------------------------------------
module function phase_mechanical_getP(co,ip,el) result(P)
module function phase_mechanical_getP(co,ce) result(P)
integer, intent(in) :: co, ip, el
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: P
P = phase_mechanical_P(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el))
P = phase_mechanical_P(material_phaseAt2(co,ce))%data(1:3,1:3,material_phaseMemberAt2(co,ce))
end function phase_mechanical_getP
! setter for homogenization
module subroutine phase_mechanical_setF(F,co,ip,el)
module subroutine phase_mechanical_setF(F,co,ce)
real(pReal), dimension(3,3), intent(in) :: F
integer, intent(in) :: co, ip, el
integer, intent(in) :: co, ce
phase_mechanical_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el)) = F
phase_mechanical_F(material_phaseAt2(co,ce))%data(1:3,1:3,material_phaseMemberAt2(co,ce)) = F
end subroutine phase_mechanical_setF

View File

@ -79,7 +79,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, i, &
Nconstituents, &
Nmembers, &
sizeState, sizeDotState, &
startIndex, endIndex
integer, dimension(:), allocatable :: &
@ -220,18 +220,18 @@ module function plastic_dislotungsten_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl
sizeState = sizeDotState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
startIndex = 1
endIndex = prm%sum_N_sl
stt%rho_mob => plasticState(ph)%state(startIndex:endIndex,:)
stt%rho_mob = spread(rho_mob_0,2,Nconstituents)
stt%rho_mob = spread(rho_mob_0,2,Nmembers)
dot%rho_mob => plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_rho'
@ -239,7 +239,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_sl
stt%rho_dip => plasticState(ph)%state(startIndex:endIndex,:)
stt%rho_dip = spread(rho_dip_0,2,Nconstituents)
stt%rho_dip = spread(rho_dip_0,2,Nmembers)
dot%rho_dip => plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
@ -251,8 +251,8 @@ module function plastic_dislotungsten_init() result(myPlasticity)
! global alias
plasticState(ph)%slipRate => plasticState(ph)%dotState(startIndex:endIndex,:)
allocate(dst%Lambda_sl(prm%sum_N_sl,Nconstituents), source=0.0_pReal)
allocate(dst%threshold_stress(prm%sum_N_sl,Nconstituents), source=0.0_pReal)
allocate(dst%Lambda_sl(prm%sum_N_sl,Nmembers), source=0.0_pReal)
allocate(dst%threshold_stress(prm%sum_N_sl,Nmembers), source=0.0_pReal)
plasticState(ph)%state0 = plasticState(ph)%state ! ToDo: this could be done centrally

View File

@ -24,7 +24,6 @@ submodule(phase:plastic) dislotwin
q_sb = 1.0_pReal, & !< q-exponent in shear band velocity
D_a = 1.0_pReal, & !< adjustment parameter to calculate minimum dipole distance
i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning
tau_0 = 1.0_pReal, & !< strength due to elements in solid solution
L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors
L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors
x_c_tw = 1.0_pReal, & !< critical distance for formation of twin nucleus
@ -53,6 +52,7 @@ submodule(phase:plastic) dislotwin
q, & !< q-exponent in glide velocity
r, & !< r-exponent in twin nucleation rate
s, & !< s-exponent in trans nucleation rate
tau_0, & !< strength due to elements in solid solution
gamma_char, & !< characteristic shear for twins
B !< drag coefficient
real(pReal), allocatable, dimension(:,:) :: &
@ -81,7 +81,7 @@ submodule(phase:plastic) dislotwin
logical :: &
ExtendedDislocations, & !< consider split into partials for climb calculation
fccTwinTransNucleation, & !< twinning and transformation models are for fcc
dipoleFormation !< flag indicating consideration of dipole formation
omitDipoles !< flag controlling consideration of dipole formation
end type !< container type for internal constitutive parameters
type :: tDislotwinState
@ -127,7 +127,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, i, &
Nconstituents, &
Nmembers, &
sizeState, sizeDotState, &
startIndex, endIndex
integer, dimension(:), allocatable :: &
@ -213,10 +213,10 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(N_sl))
prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl))
prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl))
prm%tau_0 = pl%get_asFloats('tau_0', requiredSize=size(N_sl))
prm%B = pl%get_asFloats('B', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal, i=1,size(N_sl))])
prm%tau_0 = pl%get_asFloat('tau_0')
prm%D_a = pl%get_asFloat('D_a')
prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl')
@ -226,7 +226,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%dGamma_sf_dT = pl%get_asFloat('dGamma_sf_dT')
endif
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation',defaultVal = .false.)
prm%omitDipoles = pl%get_asBool('omit_dipoles',defaultVal = .false.)
! multiplication factor according to crystal structure (nearest neighbors bcc vs fcc/hex)
! details: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
@ -242,6 +242,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%i_sl = math_expand(prm%i_sl, N_sl)
prm%p = math_expand(prm%p, N_sl)
prm%q = math_expand(prm%q, N_sl)
prm%tau_0 = math_expand(prm%tau_0, N_sl)
prm%B = math_expand(prm%B, N_sl)
! sanity checks
@ -405,21 +406,21 @@ module function plastic_dislotwin_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl &
+ size(['f_tw']) * prm%sum_N_tw &
+ size(['f_tr']) * prm%sum_N_tr
sizeState = sizeDotState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! locally defined state aliases and initialization of state0 and atol
startIndex = 1
endIndex = prm%sum_N_sl
stt%rho_mob=>plasticState(ph)%state(startIndex:endIndex,:)
stt%rho_mob= spread(rho_mob_0,2,Nconstituents)
stt%rho_mob= spread(rho_mob_0,2,Nmembers)
dot%rho_mob=>plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_rho'
@ -427,7 +428,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_sl
stt%rho_dip=>plasticState(ph)%state(startIndex:endIndex,:)
stt%rho_dip= spread(rho_dip_0,2,Nconstituents)
stt%rho_dip= spread(rho_dip_0,2,Nmembers)
dot%rho_dip=>plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
@ -443,28 +444,28 @@ module function plastic_dislotwin_init() result(myPlasticity)
endIndex = endIndex + prm%sum_N_tw
stt%f_tw=>plasticState(ph)%state(startIndex:endIndex,:)
dot%f_tw=>plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('f_twin',defaultVal=1.0e-7_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' f_twin'
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_f_tw',defaultVal=1.0e-7_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_f_tw'
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tr
stt%f_tr=>plasticState(ph)%state(startIndex:endIndex,:)
dot%f_tr=>plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('f_trans',defaultVal=1.0e-6_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' f_trans'
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_f_tr',defaultVal=1.0e-6_pReal)
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_f_tr'
allocate(dst%Lambda_sl (prm%sum_N_sl,Nconstituents),source=0.0_pReal)
allocate(dst%tau_pass (prm%sum_N_sl,Nconstituents),source=0.0_pReal)
allocate(dst%Lambda_sl (prm%sum_N_sl,Nmembers),source=0.0_pReal)
allocate(dst%tau_pass (prm%sum_N_sl,Nmembers),source=0.0_pReal)
allocate(dst%Lambda_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
allocate(dst%tau_hat_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
allocate(dst%tau_r_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
allocate(dst%V_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
allocate(dst%Lambda_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
allocate(dst%tau_hat_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
allocate(dst%tau_r_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
allocate(dst%V_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
allocate(dst%Lambda_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
allocate(dst%tau_hat_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
allocate(dst%tau_r_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
allocate(dst%V_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
allocate(dst%Lambda_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
allocate(dst%tau_hat_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
allocate(dst%tau_r_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
allocate(dst%V_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
plasticState(ph)%state0 = plasticState(ph)%state ! ToDo: this could be done centrally
@ -535,9 +536,9 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,me)
real(pReal), dimension(param(ph)%sum_N_sl) :: &
dot_gamma_sl,ddot_gamma_dtau_slip
real(pReal), dimension(param(ph)%sum_N_tw) :: &
dot_gamma_twin,ddot_gamma_dtau_twin
dot_gamma_tw,ddot_gamma_dtau_tw
real(pReal), dimension(param(ph)%sum_N_tr) :: &
dot_gamma_tr,ddot_gamma_dtau_trans
dot_gamma_tr,ddot_gamma_dtau_tr
real(pReal):: dot_gamma_sb
real(pReal), dimension(3,3) :: eigVectors, P_sb
real(pReal), dimension(3) :: eigValues
@ -578,20 +579,20 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,me)
+ ddot_gamma_dtau_slip(i) * prm%P_sl(k,l,i) * prm%P_sl(m,n,i)
enddo slipContribution
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_twin,ddot_gamma_dtau_twin)
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tw,ddot_gamma_dtau_tw)
twinContibution: do i = 1, prm%sum_N_tw
Lp = Lp + dot_gamma_twin(i)*prm%P_tw(1:3,1:3,i)
Lp = Lp + dot_gamma_tw(i)*prm%P_tw(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ ddot_gamma_dtau_twin(i)* prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
+ ddot_gamma_dtau_tw(i)* prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
enddo twinContibution
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr,ddot_gamma_dtau_trans)
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr,ddot_gamma_dtau_tr)
transContibution: do i = 1, prm%sum_N_tr
Lp = Lp + dot_gamma_tr(i)*prm%P_tr(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ ddot_gamma_dtau_trans(i)* prm%P_tr(k,l,i)*prm%P_tr(m,n,i)
+ ddot_gamma_dtau_tr(i)* prm%P_tr(k,l,i)*prm%P_tr(m,n,i)
enddo transContibution
Lp = Lp * f_unrotated
@ -646,7 +647,6 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
f_unrotated, &
rho_dip_distance, &
v_cl, & !< climb velocity
Gamma, & !< stacking fault energy
tau, &
sigma_cl, & !< climb stress
b_d !< ratio of Burgers vector to stacking fault width
@ -656,7 +656,7 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
rho_dip_distance_min, &
dot_gamma_sl
real(pReal), dimension(param(ph)%sum_N_tw) :: &
dot_gamma_twin
dot_gamma_tw
real(pReal), dimension(param(ph)%sum_N_tr) :: &
dot_gamma_tr
@ -675,7 +675,7 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
slipState: do i = 1, prm%sum_N_sl
tau = math_tensordot(Mp,prm%P_sl(1:3,1:3,i))
significantSlipStress: if (dEq0(tau)) then
significantSlipStress: if (dEq0(tau) .or. prm%omitDipoles) then
dot_rho_dip_formation(i) = 0.0_pReal
dot_rho_dip_climb(i) = 0.0_pReal
else significantSlipStress
@ -683,24 +683,18 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
rho_dip_distance = math_clip(rho_dip_distance, right = dst%Lambda_sl(i,me))
rho_dip_distance = math_clip(rho_dip_distance, left = rho_dip_distance_min(i))
if (prm%dipoleFormation) then
dot_rho_dip_formation(i) = 2.0_pReal*(rho_dip_distance-rho_dip_distance_min(i))/prm%b_sl(i) &
* stt%rho_mob(i,me)*abs(dot_gamma_sl(i))
else
dot_rho_dip_formation(i) = 0.0_pReal
endif
if (dEq(rho_dip_distance,rho_dip_distance_min(i))) then
dot_rho_dip_climb(i) = 0.0_pReal
else
!@details: Refer: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
! Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
sigma_cl = dot_product(prm%n0_sl(1:3,i),matmul(Mp,prm%n0_sl(1:3,i)))
if (prm%ExtendedDislocations) then
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
b_d = 24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu)* Gamma/(prm%mu*prm%b_sl(i))
else
b_d = 1.0_pReal
endif
b_d = merge(24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu) &
* (prm%Gamma_sf_0K + prm%dGamma_sf_dT * T) / (prm%mu*prm%b_sl(i)), &
1.0_pReal, &
prm%ExtendedDislocations)
v_cl = 2.0_pReal*prm%omega*b_d**2.0_pReal*exp(-prm%Q_cl/(kB*T)) &
* (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(kB*T)) - 1.0_pReal)
@ -718,8 +712,8 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
- 2.0_pReal*rho_dip_distance_min/prm%b_sl * stt%rho_dip(:,me)*abs(dot_gamma_sl) &
- dot_rho_dip_climb
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_twin)
dot%f_tw(:,me) = f_unrotated*dot_gamma_twin/prm%gamma_char
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tw)
dot%f_tw(:,me) = f_unrotated*dot_gamma_tw/prm%gamma_char
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr)
dot%f_tr(:,me) = f_unrotated*dot_gamma_tr
@ -741,11 +735,9 @@ module subroutine dislotwin_dependentState(T,ph,me)
T
real(pReal) :: &
sumf_twin,Gamma,sumf_trans
sumf_tw,Gamma,sumf_tr
real(pReal), dimension(param(ph)%sum_N_sl) :: &
inv_lambda_sl_sl, & !< 1/mean free distance between 2 forest dislocations seen by a moving dislocation
inv_lambda_sl_tw, & !< 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
inv_lambda_sl_tr !< 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
inv_lambda_sl
real(pReal), dimension(param(ph)%sum_N_tw) :: &
inv_lambda_tw_tw, & !< 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
f_over_t_tw
@ -760,38 +752,27 @@ module subroutine dislotwin_dependentState(T,ph,me)
stt => state(ph),&
dst => dependentState(ph))
sumf_twin = sum(stt%f_tw(1:prm%sum_N_tw,me))
sumf_trans = sum(stt%f_tr(1:prm%sum_N_tr,me))
sumf_tw = sum(stt%f_tw(1:prm%sum_N_tw,me))
sumf_tr = sum(stt%f_tr(1:prm%sum_N_tr,me))
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
!* rescaled volume fraction for topology
f_over_t_tw = stt%f_tw(1:prm%sum_N_tw,me)/prm%t_tw ! this is per system ...
f_over_t_tr = sumf_trans/prm%t_tr ! but this not
f_over_t_tr = sumf_tr/prm%t_tr ! but this not
! ToDo ...Physically correct, but naming could be adjusted
inv_lambda_sl_sl = sqrt(matmul(prm%forestProjection, &
stt%rho_mob(:,me)+stt%rho_dip(:,me)))/prm%i_sl
inv_lambda_sl = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,me)+stt%rho_dip(:,me)))/prm%i_sl
if (prm%sum_N_tw > 0 .and. prm%sum_N_sl > 0) &
inv_lambda_sl_tw = matmul(prm%h_sl_tw,f_over_t_tw)/(1.0_pReal-sumf_twin)
inv_lambda_tw_tw = matmul(prm%h_tw_tw,f_over_t_tw)/(1.0_pReal-sumf_twin)
inv_lambda_sl = inv_lambda_sl + matmul(prm%h_sl_tw,f_over_t_tw)/(1.0_pReal-sumf_tw)
if (prm%sum_N_tr > 0 .and. prm%sum_N_sl > 0) &
inv_lambda_sl_tr = matmul(prm%h_sl_tr,f_over_t_tr)/(1.0_pReal-sumf_trans)
inv_lambda_tr_tr = matmul(prm%h_tr_tr,f_over_t_tr)/(1.0_pReal-sumf_trans)
if ((prm%sum_N_tw > 0) .or. (prm%sum_N_tr > 0)) then ! ToDo: better logic needed here
dst%Lambda_sl(:,me) = prm%D &
/ (1.0_pReal+prm%D*(inv_lambda_sl_sl + inv_lambda_sl_tw + inv_lambda_sl_tr))
else
dst%Lambda_sl(:,me) = prm%D &
/ (1.0_pReal+prm%D*inv_lambda_sl_sl) !!!!!! correct?
endif
inv_lambda_sl = inv_lambda_sl + matmul(prm%h_sl_tr,f_over_t_tr)/(1.0_pReal-sumf_tr)
dst%Lambda_sl(:,me) = prm%D / (1.0_pReal+prm%D*inv_lambda_sl)
inv_lambda_tw_tw = matmul(prm%h_tw_tw,f_over_t_tw)/(1.0_pReal-sumf_tw)
dst%Lambda_tw(:,me) = prm%i_tw*prm%D/(1.0_pReal+prm%D*inv_lambda_tw_tw)
inv_lambda_tr_tr = matmul(prm%h_tr_tr,f_over_t_tr)/(1.0_pReal-sumf_tr)
dst%Lambda_tr(:,me) = prm%i_tr*prm%D/(1.0_pReal+prm%D*inv_lambda_tr_tr)
!* threshold stress for dislocation motion
@ -957,7 +938,7 @@ end subroutine kinetics_slip
! have the optional arguments at the end.
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
dot_gamma_twin,ddot_gamma_dtau_twin)
dot_gamma_tw,ddot_gamma_dtau_tw)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
@ -970,9 +951,9 @@ pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
dot_gamma_sl
real(pReal), dimension(param(ph)%sum_N_tw), intent(out) :: &
dot_gamma_twin
dot_gamma_tw
real(pReal), dimension(param(ph)%sum_N_tw), optional, intent(out) :: &
ddot_gamma_dtau_twin
ddot_gamma_dtau_tw
real, dimension(param(ph)%sum_N_tw) :: &
tau, &
@ -1004,16 +985,16 @@ pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
significantStress: where(tau > tol_math_check)
StressRatio_r = (dst%tau_hat_tw(:,me)/tau)**prm%r
dot_gamma_twin = prm%gamma_char * dst%V_tw(:,me) * Ndot0*exp(-StressRatio_r)
ddot_gamma_dtau = (dot_gamma_twin*prm%r/tau)*StressRatio_r
dot_gamma_tw = prm%gamma_char * dst%V_tw(:,me) * Ndot0*exp(-StressRatio_r)
ddot_gamma_dtau = (dot_gamma_tw*prm%r/tau)*StressRatio_r
else where significantStress
dot_gamma_twin = 0.0_pReal
dot_gamma_tw = 0.0_pReal
ddot_gamma_dtau = 0.0_pReal
end where significantStress
end associate
if(present(ddot_gamma_dtau_twin)) ddot_gamma_dtau_twin = ddot_gamma_dtau
if(present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw = ddot_gamma_dtau
end subroutine kinetics_twin
@ -1026,7 +1007,7 @@ end subroutine kinetics_twin
! have the optional arguments at the end.
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
dot_gamma_tr,ddot_gamma_dtau_trans)
dot_gamma_tr,ddot_gamma_dtau_tr)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
@ -1041,7 +1022,7 @@ pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
real(pReal), dimension(param(ph)%sum_N_tr), intent(out) :: &
dot_gamma_tr
real(pReal), dimension(param(ph)%sum_N_tr), optional, intent(out) :: &
ddot_gamma_dtau_trans
ddot_gamma_dtau_tr
real, dimension(param(ph)%sum_N_tr) :: &
tau, &
@ -1081,7 +1062,7 @@ pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
end associate
if(present(ddot_gamma_dtau_trans)) ddot_gamma_dtau_trans = ddot_gamma_dtau
if(present(ddot_gamma_dtau_tr)) ddot_gamma_dtau_tr = ddot_gamma_dtau
end subroutine kinetics_trans

View File

@ -52,7 +52,7 @@ module function plastic_isotropic_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, &
Nconstituents, &
Nmembers, &
sizeState, sizeDotState
real(pReal) :: &
xi_0 !< initial critical stress
@ -119,11 +119,11 @@ module function plastic_isotropic_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size(['xi ','gamma'])
sizeState = sizeDotState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization

View File

@ -62,7 +62,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, o, &
Nconstituents, &
Nmembers, &
sizeState, sizeDeltaState, sizeDotState, &
startIndex, endIndex
integer, dimension(:), allocatable :: &
@ -165,19 +165,19 @@ module function plastic_kinehardening_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size(['crss ','crss_back', 'accshear ']) * prm%sum_N_sl !ToDo: adjust names like in material.yaml
sizeDeltaState = size(['sense ', 'chi0 ', 'gamma0' ]) * prm%sum_N_sl !ToDo: adjust names like in material.yaml
sizeState = sizeDotState + sizeDeltaState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,sizeDeltaState)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
startIndex = 1
endIndex = prm%sum_N_sl
stt%crss => plasticState(ph)%state (startIndex:endIndex,:)
stt%crss = spread(xi_0, 2, Nconstituents)
stt%crss = spread(xi_0, 2, Nmembers)
dot%crss => plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'

View File

@ -177,7 +177,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
integer :: &
Ninstances, &
ph, &
Nconstituents, &
Nmembers, &
sizeState, sizeDotState, sizeDependentState, sizeDeltaState, &
s1, s2, &
s, t, l
@ -398,7 +398,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size([ 'rhoSglEdgePosMobile ','rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ','rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ','rhoSglEdgeNegImmobile ', &
@ -412,9 +412,9 @@ module function plastic_nonlocal_init() result(myPlasticity)
'maxDipoleHeightEdge ','maxDipoleHeightScrew' ]) * prm%sum_N_sl !< other dependent state variables that are not updated by microstructure
sizeDeltaState = sizeDotState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,sizeDeltaState)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState)
allocate(geom(ph)%V_0(Nconstituents))
allocate(geom(ph)%V_0(Nmembers))
call storeGeometry(ph)
plasticState(ph)%nonlocal = pl%get_asBool('nonlocal')
@ -486,26 +486,26 @@ module function plastic_nonlocal_init() result(myPlasticity)
dot%rho_dip_scr => plasticState(ph)%dotState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
del%rho_dip_scr => plasticState(ph)%deltaState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
stt%gamma => plasticState(ph)%state (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
dot%gamma => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
del%gamma => plasticState(ph)%deltaState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
stt%gamma => plasticState(ph)%state (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
dot%gamma => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
del%gamma => plasticState(ph)%deltaState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl ) = pl%get_asFloat('atol_gamma', defaultVal = 1.0e-2_pReal)
if(any(plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl) < 0.0_pReal)) &
extmsg = trim(extmsg)//' atol_gamma'
plasticState(ph)%slipRate => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
plasticState(ph)%slipRate => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
stt%rho_forest => plasticState(ph)%state (11*prm%sum_N_sl + 1:12*prm%sum_N_sl,1:Nconstituents)
stt%v => plasticState(ph)%state (12*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nconstituents)
stt%v_edg_pos => plasticState(ph)%state (12*prm%sum_N_sl + 1:13*prm%sum_N_sl,1:Nconstituents)
stt%v_edg_neg => plasticState(ph)%state (13*prm%sum_N_sl + 1:14*prm%sum_N_sl,1:Nconstituents)
stt%v_scr_pos => plasticState(ph)%state (14*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nconstituents)
stt%v_scr_neg => plasticState(ph)%state (15*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nconstituents)
stt%rho_forest => plasticState(ph)%state (11*prm%sum_N_sl + 1:12*prm%sum_N_sl,1:Nmembers)
stt%v => plasticState(ph)%state (12*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nmembers)
stt%v_edg_pos => plasticState(ph)%state (12*prm%sum_N_sl + 1:13*prm%sum_N_sl,1:Nmembers)
stt%v_edg_neg => plasticState(ph)%state (13*prm%sum_N_sl + 1:14*prm%sum_N_sl,1:Nmembers)
stt%v_scr_pos => plasticState(ph)%state (14*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nmembers)
stt%v_scr_neg => plasticState(ph)%state (15*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nmembers)
allocate(dst%tau_pass(prm%sum_N_sl,Nconstituents),source=0.0_pReal)
allocate(dst%tau_back(prm%sum_N_sl,Nconstituents),source=0.0_pReal)
allocate(dst%tau_pass(prm%sum_N_sl,Nmembers),source=0.0_pReal)
allocate(dst%tau_back(prm%sum_N_sl,Nmembers),source=0.0_pReal)
end associate
if (Nconstituents > 0) call stateInit(ini,ph,Nconstituents)
if (Nmembers > 0) call stateInit(ini,ph,Nmembers)
plasticState(ph)%state0 = plasticState(ph)%state
!--------------------------------------------------------------------------------------------------
@ -527,7 +527,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
if(.not. myPlasticity(ph)) cycle
phase => phases%get(ph)
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
l = 0
do t = 1,4
do s = 1,param(ph)%sum_N_sl
@ -1403,8 +1403,10 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e)
integer :: &
n, & ! neighbor index
me, &
neighbor_e, & ! element index of my neighbor
neighbor_i, & ! integration point index of my neighbor
neighbor_me, &
neighbor_phase, &
ns, & ! number of active slip systems
s1, & ! slip system index (me)
@ -1422,6 +1424,7 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e)
associate(prm => param(ph))
ns = prm%sum_N_sl
me = material_phaseMemberAt(1,i,e)
!*** start out fully compatible
my_compatibility = 0.0_pReal
forall(s1 = 1:ns) my_compatibility(:,s1,s1,:) = 1.0_pReal
@ -1429,7 +1432,7 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e)
neighbors: do n = 1,nIPneighbors
neighbor_e = IPneighborhood(1,n,i,e)
neighbor_i = IPneighborhood(2,n,i,e)
neighbor_me = material_phaseMemberAt(1,neighbor_i,neighbor_e)
neighbor_phase = material_phaseAt(1,neighbor_e)
if (neighbor_e <= 0 .or. neighbor_i <= 0) then
@ -1447,8 +1450,8 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e)
elseif (prm%chi_GB >= 0.0_pReal) then
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (any(dNeq(material_orientation0(1,i,e)%asQuaternion(), &
material_orientation0(1,neighbor_i,neighbor_e)%asQuaternion())) .and. &
if (any(dNeq(material_orientation0(1,ph,me)%asQuaternion(), &
material_orientation0(1,neighbor_phase,neighbor_me)%asQuaternion())) .and. &
(.not. phase_localPlasticity(neighbor_phase))) &
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%chi_GB)
else
@ -1576,13 +1579,13 @@ end subroutine plastic_nonlocal_results
!--------------------------------------------------------------------------------------------------
!> @brief populates the initial dislocation density
!--------------------------------------------------------------------------------------------------
subroutine stateInit(ini,phase,Nconstituents)
subroutine stateInit(ini,phase,Nmembers)
type(tInitialParameters) :: &
ini
integer,intent(in) :: &
phase, &
Nconstituents
Nmembers
integer :: &
i, &
e, &
@ -1599,7 +1602,7 @@ subroutine stateInit(ini,phase,Nconstituents)
totalVolume, &
densityBinning, &
minimumIpVolume
real(pReal), dimension(Nconstituents) :: &
real(pReal), dimension(Nmembers) :: &
volume
@ -1619,13 +1622,13 @@ subroutine stateInit(ini,phase,Nconstituents)
meanDensity = 0.0_pReal
do while(meanDensity < ini%random_rho_u)
call random_number(rnd)
phasemember = nint(rnd(1)*real(Nconstituents,pReal) + 0.5_pReal)
phasemember = nint(rnd(1)*real(Nmembers,pReal) + 0.5_pReal)
s = nint(rnd(2)*real(sum(ini%N_sl),pReal)*4.0_pReal + 0.5_pReal)
meanDensity = meanDensity + densityBinning * volume(phasemember) / totalVolume
stt%rhoSglMobile(s,phasemember) = densityBinning
enddo
else ! homogeneous distribution with noise
do e = 1, Nconstituents
do e = 1, Nmembers
do f = 1,size(ini%N_sl,1)
from = 1 + sum(ini%N_sl(1:f-1))
upto = sum(ini%N_sl(1:f))
@ -1806,7 +1809,7 @@ pure function getRho0(ph,me)
getRho0(:,mob) = max(getRho0(:,mob),0.0_pReal)
getRho0(:,dip) = max(getRho0(:,dip),0.0_pReal)
where(abs(getRho0) < max(prm%rho_min/geom(ph)%V_0(me)**(2.0_pReal/3.0_pReal),prm%rho_significant)) &
where (abs(getRho0) < max(prm%rho_min/geom(ph)%V_0(me)**(2.0_pReal/3.0_pReal),prm%rho_significant)) &
getRho0 = 0.0_pReal
end associate
@ -1819,16 +1822,13 @@ subroutine storeGeometry(ph)
integer, intent(in) :: ph
integer :: ip, el, ce, co
real(pReal), dimension(:), allocatable :: V
ce = 0
do el = 1, size(material_homogenizationMemberAt,2)
do ip = 1, size(material_homogenizationMemberAt,1)
ce = ce + 1
V = reshape(IPvolume,[product(shape(IPvolume))])
do ce = 1, size(material_homogenizationMemberAt2,1)
do co = 1, homogenization_maxNconstituents
if(material_phaseAt2(co,ce) == ph) then
geom(ph)%V_0(material_phaseMemberAt2(co,ce)) = IPvolume(ip,el)
endif
enddo
if (material_phaseAt2(co,ce) == ph) geom(ph)%V_0(material_phaseMemberAt2(co,ce)) = V(ce)
enddo
enddo

View File

@ -71,7 +71,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, i, &
Nconstituents, &
Nmembers, &
sizeState, sizeDotState, &
startIndex, endIndex
integer, dimension(:), allocatable :: &
@ -223,20 +223,20 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == ph)
Nmembers = count(material_phaseAt2 == ph)
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
sizeState = sizeDotState
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
startIndex = 1
endIndex = prm%sum_N_sl
stt%xi_slip => plasticState(ph)%state (startIndex:endIndex,:)
stt%xi_slip = spread(xi_0_sl, 2, Nconstituents)
stt%xi_slip = spread(xi_0_sl, 2, Nmembers)
dot%xi_slip => plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
@ -244,7 +244,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tw
stt%xi_twin => plasticState(ph)%state (startIndex:endIndex,:)
stt%xi_twin = spread(xi_0_tw, 2, Nconstituents)
stt%xi_twin = spread(xi_0_tw, 2, Nmembers)
dot%xi_twin => plasticState(ph)%dotState(startIndex:endIndex,:)
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'

View File

@ -15,13 +15,13 @@ submodule(phase) thermal
THERMAL_EXTERNALHEAT_ID
end enum
type :: tDataContainer
type :: tDataContainer ! ?? not very telling name. Better: "fieldQuantities" ??
real(pReal), dimension(:), allocatable :: T, dot_T
end type tDataContainer
integer(kind(THERMAL_UNDEFINED_ID)), dimension(:,:), allocatable :: &
thermal_source
type(tDataContainer), dimension(:), allocatable :: current
type(tDataContainer), dimension(:), allocatable :: current ! ?? not very telling name. Better: "field" ??
integer :: thermal_source_maxSizeDotState
@ -78,41 +78,36 @@ module subroutine thermal_init(phases)
integer :: &
ph, so, &
Nconstituents
Nmembers
print'(/,a)', ' <<<+- phase:thermal init -+>>>'
allocate(current(phases%length))
allocate(thermalState (phases%length))
allocate(thermalState(phases%length))
allocate(thermal_Nsources(phases%length),source = 0)
do ph = 1, phases%length
Nconstituents = count(material_phaseAt2 == ph)
allocate(current(ph)%T(Nconstituents),source=300.0_pReal)
allocate(current(ph)%dot_T(Nconstituents),source=0.0_pReal)
Nmembers = count(material_phaseAt2 == ph)
allocate(current(ph)%T(Nmembers),source=300.0_pReal)
allocate(current(ph)%dot_T(Nmembers),source=0.0_pReal)
phase => phases%get(ph)
if(phase%contains('thermal')) then
thermal => phase%get('thermal')
thermal => phase%get('thermal',defaultVal=emptyDict)
sources => thermal%get('source',defaultVal=emptyList)
thermal_Nsources(ph) = sources%length
endif
allocate(thermalstate(ph)%p(thermal_Nsources(ph)))
enddo
allocate(thermal_source(maxval(thermal_Nsources),phases%length), source = THERMAL_UNDEFINED_ID)
if(maxval(thermal_Nsources) /= 0) then
if (maxval(thermal_Nsources) /= 0) then
where(dissipation_init (maxval(thermal_Nsources))) thermal_source = THERMAL_DISSIPATION_ID
where(externalheat_init(maxval(thermal_Nsources))) thermal_source = THERMAL_EXTERNALHEAT_ID
endif
thermal_source_maxSizeDotState = 0
PhaseLoop2:do ph = 1,phases%length
do ph = 1,phases%length
do so = 1,thermal_Nsources(ph)
thermalState(ph)%p(so)%state = thermalState(ph)%p(so)%state0
@ -120,7 +115,7 @@ module subroutine thermal_init(phases)
thermal_source_maxSizeDotState = max(thermal_source_maxSizeDotState, &
maxval(thermalState(ph)%p%sizeDotState))
enddo PhaseLoop2
enddo
end subroutine thermal_init
@ -156,7 +151,6 @@ module subroutine phase_thermal_getRate(TDot, ph,me)
Tdot = Tdot + my_Tdot
enddo
end subroutine phase_thermal_getRate
@ -185,7 +179,7 @@ function phase_thermal_collectDotState(ph,me) result(broken)
end function phase_thermal_collectDotState
module function thermal_stress(Delta_t,ph,me) result(converged_)
module function thermal_stress(Delta_t,ph,me) result(converged_) ! ?? why is this called "stress" when it seems closer to "updateState" ??
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: ph, me
@ -212,7 +206,7 @@ function integrateThermalState(Delta_t, ph,me) result(broken)
sizeDotState
broken = phase_thermal_collectDotState(ph,me)
if(broken) return
if (broken) return
do so = 1, thermal_Nsources(ph)
sizeDotState = thermalState(ph)%p(so)%sizeDotState
@ -301,14 +295,12 @@ function thermal_active(source_label,src_length) result(active_source)
allocate(active_source(src_length,phases%length), source = .false. )
do p = 1, phases%length
phase => phases%get(p)
if (phase%contains('thermal')) then
thermal => phase%get('thermal',defaultVal=emptyList)
thermal => phase%get('thermal',defaultVal=emptyDict)
sources => thermal%get('source',defaultVal=emptyList)
do s = 1, sources%length
src => sources%get(s)
if(src%get_asString('type') == source_label) active_source(s,p) = .true.
active_source(s,p) = src%get_asString('type') == source_label
enddo
endif
enddo

View File

@ -31,7 +31,7 @@ module function dissipation_init(source_length) result(mySources)
phase, &
sources, thermal, &
src
integer :: so,Nconstituents,ph
integer :: so,Nmembers,ph
mySources = thermal_active('dissipation',source_length)
@ -54,8 +54,8 @@ module function dissipation_init(source_length) result(mySources)
src => sources%get(so)
prm%kappa = src%get_asFloat('kappa')
Nconstituents = count(material_phaseAt2 == ph)
call phase_allocateState(thermalState(ph)%p(so),Nconstituents,0,0,0)
Nmembers = count(material_phaseAt2 == ph)
call phase_allocateState(thermalState(ph)%p(so),Nmembers,0,0,0)
end associate
endif

View File

@ -38,7 +38,7 @@ module function externalheat_init(source_length) result(mySources)
phase, &
sources, thermal, &
src
integer :: so,Nconstituents,ph
integer :: so,Nmembers,ph
mySources = thermal_active('externalheat',source_length)
@ -67,8 +67,8 @@ module function externalheat_init(source_length) result(mySources)
prm%f_T = src%get_asFloats('f_T',requiredSize = size(prm%t_n))
Nconstituents = count(material_phaseAt2 == ph)
call phase_allocateState(thermalState(ph)%p(so),Nconstituents,1,1,0)
Nmembers = count(material_phaseAt2 == ph)
call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0)
end associate
endif
enddo