set useful default values to remove dummy functions in individual homogenization schemes (stateInit, averageTemperature, and updateState (isostrain only))

This commit is contained in:
Martin Diehl 2013-10-11 16:01:53 +00:00
parent 80cb78c1fd
commit b651f334fe
3 changed files with 164 additions and 262 deletions

View File

@ -214,7 +214,7 @@ subroutine homogenization_init(Temperature)
allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance)
homogenization_state0(i,e)%p = 0.0_pReal
homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance)
endif
homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance)
@ -223,7 +223,7 @@ subroutine homogenization_init(Temperature)
allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance)))
homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance)
homogenization_state0(i,e)%p = 0.0_pReal
homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance)
endif
homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance)
@ -575,7 +575,7 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
call homogenization_averageStressAndItsTangent(i,e)
call homogenization_averageTemperature(i,e)
materialpoint_Temperature(i,e) = homogenization_averageTemperature(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
@ -652,7 +652,7 @@ end subroutine materialpoint_postResults
!--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_partitionDeformation(i,e)
subroutine homogenization_partitionDeformation(ip,el)
use mesh, only: &
mesh_element
use material, only: &
@ -670,25 +670,25 @@ subroutine homogenization_partitionDeformation(i,e)
implicit none
integer(pInt), intent(in) :: &
i, & !< integration point
e !< element number
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,e)))
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label) chosenHomogenization
call homogenization_isostrain_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),&
materialpoint_subF(1:3,1:3,i,e),&
homogenization_state(i,e), &
i, &
e)
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
homogenization_state(ip,el), &
ip, &
el)
case (homogenization_RGC_label) chosenHomogenization
call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),&
materialpoint_subF(1:3,1:3,i,e),&
homogenization_state(i,e), &
i, &
e)
call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
homogenization_state(ip,el), &
ip, &
el)
end select chosenHomogenization
end subroutine homogenization_partitionDeformation
@ -698,7 +698,7 @@ end subroutine homogenization_partitionDeformation
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_updateState(i,e)
function homogenization_updateState(ip,el)
use mesh, only: &
mesh_element
use material, only: &
@ -709,39 +709,32 @@ function homogenization_updateState(i,e)
crystallite_dPdF, &
crystallite_partionedF,&
crystallite_partionedF0
use homogenization_isostrain, only: &
homogenization_isostrain_updateState, &
homogenization_isostrain_label
use homogenization_RGC, only: &
homogenization_RGC_updateState, &
homogenization_RGC_label
implicit none
integer(pInt), intent(in) :: &
i, & !< integration point
e !< element number
ip, & !< integration point
el !< element number
logical, dimension(2) :: homogenization_updateState
chosenHomogenization: select case(homogenization_type(mesh_element(3,e)))
case (homogenization_isostrain_label) chosenHomogenization
homogenization_updateState = &
homogenization_isostrain_updateState( homogenization_state(i,e), &
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), &
i, &
e)
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (homogenization_RGC_label) chosenHomogenization
homogenization_updateState = &
homogenization_RGC_updateState( homogenization_state(i,e), &
homogenization_subState0(i,e), &
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),&
materialpoint_subF(1:3,1:3,i,e),&
materialpoint_subdt(i,e), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), &
i, &
e)
homogenization_RGC_updateState( homogenization_state(ip,el), &
homogenization_subState0(ip,el), &
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
materialpoint_subdt(ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
e)l
case default chosenHomogenization
homogenization_updateState = .true.
end select chosenHomogenization
end function homogenization_updateState
@ -750,7 +743,7 @@ end function homogenization_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_averageStressAndItsTangent(i,e)
subroutine homogenization_averageStressAndItsTangent(ip,el)
use mesh, only: &
mesh_element
use material, only: &
@ -767,69 +760,61 @@ subroutine homogenization_averageStressAndItsTangent(i,e)
implicit none
integer(pInt), intent(in) :: &
i, & !< integration point
e !< element number
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,e)))
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label) chosenHomogenization
call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,i,e), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,i,e),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), &
i, &
e)
call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
case (homogenization_RGC_label) chosenHomogenization
call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,i,e), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,i,e),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), &
i, &
e)
call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
end select chosenHomogenization
end subroutine homogenization_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief derive average temperature from constituent quantities
!> @brief derive average temperature from constituent quantities (does not depend on choosen
!! homogenization scheme)
!--------------------------------------------------------------------------------------------------
subroutine homogenization_averageTemperature(i,e)
real(pReal) function homogenization_averageTemperature(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
homogenization_maxNgrains
homogenization_Ngrains
use crystallite, only: &
crystallite_Temperature
use homogenization_isostrain, only: &
homogenization_isostrain_averageTemperature, &
homogenization_isostrain_label
use homogenization_RGC, only: &
homogenization_RGC_averageTemperature, &
homogenization_RGC_label
implicit none
integer(pInt), intent(in) :: &
i, & !< integration point
e !< element number
ip, & !< integration point number
el !< element number
integer(pInt) :: &
Ngrains
chosenHomogenization: select case(homogenization_type(mesh_element(3,e)))
case (homogenization_isostrain_label) chosenHomogenization
materialpoint_Temperature(i,e) = &
homogenization_isostrain_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,i,e), i, e)
case (homogenization_RGC_label) chosenHomogenization
materialpoint_Temperature(i,e) = &
homogenization_RGC_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,i,e), i, e)
end select chosenHomogenization
!--------------------------------------------------------------------------------------------------
! computing the average temperature
Ngrains = homogenization_Ngrains(mesh_element(3,el))
homogenization_averageTemperature= sum(crystallite_Temperature(1:Ngrains,ip,el))/real(Ngrains,pReal)
end subroutine homogenization_averageTemperature
end function homogenization_averageTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only,
!> if homogenization_sizePostResults(i,e) > 0 !!
!--------------------------------------------------------------------------------------------------
function homogenization_postResults(i,e)
function homogenization_postResults(ip,el)
use mesh, only: &
mesh_element
use material, only: &
@ -843,16 +828,16 @@ function homogenization_postResults(i,e)
implicit none
integer(pInt), intent(in) :: &
i, & !< integration point
e !< element number
real(pReal), dimension(homogenization_sizePostResults(i,e)) :: homogenization_postResults
ip, & !< integration point
el !< element number
real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults
homogenization_postResults = 0.0_pReal
chosenHomogenization: select case (homogenization_type(mesh_element(3,e)))
chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label) chosenHomogenization
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(i,e),i,e)
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el)
case (homogenization_RGC_label) chosenHomogenization
homogenization_postResults = homogenization_RGC_postResults(homogenization_state(i,e),i,e)
homogenization_postResults = homogenization_RGC_postResults(homogenization_state(ip,el),ip,el)
end select chosenHomogenization
end function homogenization_postResults

View File

@ -52,14 +52,11 @@ module homogenization_RGC
real(pReal), dimension(:), allocatable, private :: &
homogenization_RGC_xiAlpha, &
homogenization_RGC_ciAlpha
public :: &
homogenization_RGC_init, &
homogenization_RGC_stateInit, &
homogenization_RGC_partitionDeformation, &
homogenization_RGC_averageStressAndItsTangent, &
homogenization_RGC_updateState, &
homogenization_RGC_averageTemperature, &
homogenization_RGC_postResults
private :: &
homogenization_RGC_stressPenalty, &
@ -105,8 +102,8 @@ subroutine homogenization_RGC_init(myFile)
implicit none
integer(pInt), intent(in) :: myFile !< file pointer to material configuration
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions
integer(pInt), parameter :: MAXNCHUNKS = 4_pInt
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt) ::section=0_pInt, maxNinstance, i,j,e, output=-1_pInt, mySize, myInstance
character(len=65536) :: tag
character(len=65536) :: line = ''
@ -150,7 +147,7 @@ subroutine homogenization_RGC_init(myFile)
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
if (trim(homogenization_type(section)) == HOMOGENIZATION_RGC_label) then ! one of my sections
i = homogenization_typeInstance(section) ! which instance of my type is present homogenization
positions = IO_stringPos(line,maxNchunks)
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
@ -249,20 +246,6 @@ subroutine homogenization_RGC_init(myFile)
end subroutine homogenization_RGC_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial homogenization state
!--------------------------------------------------------------------------------------------------
function homogenization_RGC_stateInit(myInstance)
implicit none
integer(pInt), intent(in) :: myInstance
real(pReal), dimension(homogenization_RGC_sizeState(myInstance)) :: homogenization_RGC_stateInit
homogenization_RGC_stateInit = 0.0_pReal
end function homogenization_RGC_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
@ -877,27 +860,7 @@ subroutine homogenization_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,
avgP = sum(P,3)/real(Ngrains,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal)
end subroutine
!--------------------------------------------------------------------------------------------------
!> @brief derive average temperature from constituent quantities
!--------------------------------------------------------------------------------------------------
real(pReal) pure function homogenization_RGC_averageTemperature(Temperature,ip,el)
use mesh, only: mesh_element
use material, only: homogenization_maxNgrains, homogenization_Ngrains
implicit none
real(pReal), dimension (homogenization_maxNgrains), intent(in) :: Temperature
integer(pInt), intent(in) :: ip,el
integer(pInt) :: Ngrains
!--------------------------------------------------------------------------------------------------
! computing the average temperature
Ngrains = homogenization_Ngrains(mesh_element(3,el))
homogenization_RGC_averageTemperature = sum(Temperature(1:Ngrains))/real(Ngrains,pReal)
end function homogenization_RGC_averageTemperature
end subroutine homogenization_RGC_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
@ -990,9 +953,9 @@ subroutine homogenization_RGC_stressPenalty(rPen,nMis,avgF,fDef,ip,el,homID)
real(pReal), dimension (3,3) :: gDef,nDef
real(pReal), dimension (3) :: nVect,surfCorr
real(pReal), dimension (2) :: Gmoduli
integer(pInt) homID,iGrain,iGNghb,iFace,i,j,k,l
real(pReal) muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb
!
integer(pInt) :: homID,iGrain,iGNghb,iFace,i,j,k,l
real(pReal) :: muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb
integer(pInt), parameter :: nFace = 6_pInt
real(pReal), parameter :: nDefToler = 1.0e-10_pReal
@ -1016,7 +979,7 @@ subroutine homogenization_RGC_stressPenalty(rPen,nMis,avgF,fDef,ip,el,homID)
!$OMP END CRITICAL (write2out)
endif
!!!------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
do iGrain = 1_pInt,homogenization_Ngrains(mesh_element(3,el))
Gmoduli = homogenization_RGC_equivalentModuli(iGrain,ip,el)
@ -1129,8 +1092,8 @@ subroutine homogenization_RGC_volumePenalty(vPen,vDiscrep,fDef,fAvg,ip,el, homID
integer(pInt), intent(in) :: ip,& ! integration point
el
real(pReal), dimension (homogenization_maxNgrains) :: gVol
integer(pInt) homID,iGrain,nGrain,i,j
!
integer(pInt) :: homID,iGrain,nGrain,i,j
nGrain = homogenization_Ngrains(mesh_element(3,el))
!--------------------------------------------------------------------------------------------------
@ -1182,10 +1145,10 @@ function homogenization_RGC_surfaceCorrection(avgF,ip,el)
el !< element number
real(pReal), dimension(3,3) :: invC,avgC
real(pReal), dimension(3) :: nVect
real(pReal) detF
real(pReal) :: detF
integer(pInt), dimension(4) :: intFace
integer(pInt) i,j,iBase
logical error
integer(pInt) :: i,j,iBase
logical :: error
avgC = math_mul33x33(transpose(avgF),avgF)
call math_invert33(avgC,invC,detF,error)
@ -1219,7 +1182,7 @@ function homogenization_RGC_equivalentModuli(grainID,ip,el)
el !< element number
real(pReal), dimension (6,6) :: elasTens
real(pReal), dimension(2) :: homogenization_RGC_equivalentModuli
real(pReal) cEquiv_11,cEquiv_12,cEquiv_44
real(pReal) :: cEquiv_11,cEquiv_12,cEquiv_44
elasTens = constitutive_homogenizedC(grainID,ip,el)

View File

@ -32,7 +32,7 @@ module homogenization_isostrain
character (len=*), parameter, public :: &
HOMOGENIZATION_ISOSTRAIN_label = 'isostrain'
integer(pInt), dimension(:), allocatable, public :: &
integer(pInt), dimension(:), allocatable, public, protected :: &
homogenization_isostrain_sizeState, &
homogenization_isostrain_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
@ -46,11 +46,8 @@ module homogenization_isostrain
public :: &
homogenization_isostrain_init, &
homogenization_isostrain_stateInit, &
homogenization_isostrain_partitionDeformation, &
homogenization_isostrain_updateState, &
homogenization_isostrain_averageStressAndItsTangent, &
homogenization_isostrain_averageTemperature, &
homogenization_isostrain_postResults
contains
@ -60,14 +57,20 @@ contains
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, math_Voigt66to3333
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO
use material
implicit none
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions
integer(pInt) section, i, j, output, mySize
integer :: maxNinstance, k ! no pInt (stores a system dependen value from 'count'
integer(pInt), parameter :: MAXNCHUNKS = 2_pInt
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt) :: &
section, i, j, output, mySize
integer :: &
maxNinstance, k ! no pInt (stores a system dependen value from 'count'
character(len=65536) :: &
tag = '', &
line = '' ! to start initialized
@ -80,14 +83,18 @@ subroutine homogenization_isostrain_init(myFile)
maxNinstance = count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_label)
if (maxNinstance == 0) return
allocate(homogenization_isostrain_sizeState(maxNinstance)) ; homogenization_isostrain_sizeState = 0_pInt
allocate(homogenization_isostrain_sizePostResults(maxNinstance)); homogenization_isostrain_sizePostResults = 0_pInt
allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput), &
maxNinstance)); homogenization_isostrain_sizePostResult = 0_pInt
allocate(homogenization_isostrain_Ngrains(maxNinstance)); homogenization_isostrain_Ngrains = 0_pInt
allocate(homogenization_isostrain_mapping(maxNinstance)); homogenization_isostrain_mapping = 'avg'
allocate(homogenization_isostrain_output(maxval(homogenization_Noutput), &
maxNinstance)) ; homogenization_isostrain_output = ''
allocate(homogenization_isostrain_sizeState(maxNinstance))
homogenization_isostrain_sizeState = 0_pInt
allocate(homogenization_isostrain_sizePostResults(maxNinstance))
homogenization_isostrain_sizePostResults = 0_pInt
allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_sizePostResult = 0_pInt
allocate(homogenization_isostrain_Ngrains(maxNinstance))
homogenization_isostrain_Ngrains = 0_pInt
allocate(homogenization_isostrain_mapping(maxNinstance))
homogenization_isostrain_mapping = 'avg'
allocate(homogenization_isostrain_output(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_output = ''
rewind(myFile)
section = 0_pInt
@ -107,7 +114,7 @@ subroutine homogenization_isostrain_init(myFile)
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
if (trim(homogenization_type(section)) == HOMOGENIZATION_ISOSTRAIN_label) then ! one of my sections
i = homogenization_typeInstance(section) ! which instance of my type is present homogenization
positions = IO_stringPos(line,maxNchunks)
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
@ -144,30 +151,18 @@ subroutine homogenization_isostrain_init(myFile)
end subroutine homogenization_isostrain_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial homogenization stated
!--------------------------------------------------------------------------------------------------
function homogenization_isostrain_stateInit(myInstance)
use prec, only: &
pReal
implicit none
integer(pInt), intent(in) :: myInstance
real(pReal), dimension(homogenization_isostrain_sizeState(myInstance)) :: &
homogenization_isostrain_stateInit
homogenization_isostrain_stateInit = 0.0_pReal
end function homogenization_isostrain_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_partitionDeformation(F,F0,avgF,state,i,e)
use prec, only: pReal,p_vec
use mesh, only: mesh_element
use material, only: homogenization_maxNgrains,homogenization_Ngrains
subroutine homogenization_isostrain_partitionDeformation(F,F0,avgF,state,ip,el)
use prec, only: &
pReal, &
p_vec
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains
implicit none
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F ! partioned def grad per grain
@ -175,48 +170,26 @@ subroutine homogenization_isostrain_partitionDeformation(F,F0,avgF,state,i,e)
real(pReal), dimension (3,3), intent(in) :: avgF ! my average def grad
type(p_vec), intent(in) :: state ! my state
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
ip, & !< integration point number
el !< element number
F = spread(avgF,3,homogenization_Ngrains(mesh_element(3,e)))
F = spread(avgF,3,homogenization_Ngrains(mesh_element(3,el)))
end subroutine homogenization_isostrain_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_isostrain_updateState(state,P,dPdF,i,e)
use prec, only: &
pReal,&
p_vec
use material, only: &
homogenization_maxNgrains
implicit none
type(p_vec), intent(inout) :: state !< my state
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
logical, dimension(2) :: homogenization_isostrain_updateState
homogenization_isostrain_updateState = .true. ! homogenization at material point converged (done and happy)
end function homogenization_isostrain_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,i,e)
subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ip,el)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: homogenization_maxNgrains, homogenization_Ngrains, homogenization_typeInstance
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains, &
homogenization_typeInstance
implicit none
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
@ -224,12 +197,14 @@ subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: homID,Ngrains
ip, & !< integration point number
el !< element number
integer(pInt) :: &
homID, &
Ngrains
homID = homogenization_typeInstance(mesh_element(3,e))
Ngrains = homogenization_Ngrains(mesh_element(3,e))
homID = homogenization_typeInstance(mesh_element(3,el))
Ngrains = homogenization_Ngrains(mesh_element(3,el))
select case (homogenization_isostrain_mapping(homID))
case ('parallel','sum')
@ -246,35 +221,10 @@ subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P
end subroutine homogenization_isostrain_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief derive average temperature from constituent quantities
!--------------------------------------------------------------------------------------------------
real(pReal) pure function homogenization_isostrain_averageTemperature(Temperature,i,e)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains
implicit none
real(pReal), dimension (homogenization_maxNgrains), intent(in) :: Temperature
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: Ngrains
Ngrains = homogenization_Ngrains(mesh_element(3,e))
homogenization_isostrain_averageTemperature = sum(Temperature(1:Ngrains))/real(Ngrains,pReal)
end function homogenization_isostrain_averageTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion
!--------------------------------------------------------------------------------------------------
pure function homogenization_isostrain_postResults(state,i,e)
pure function homogenization_isostrain_postResults(state,ip,el)
use prec, only: &
pReal,&
p_vec
@ -287,17 +237,21 @@ pure function homogenization_isostrain_postResults(state,i,e)
implicit none
type(p_vec), intent(in) :: state
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: homID,o,c
real(pReal), dimension(homogenization_isostrain_sizePostResults&
(homogenization_typeInstance(mesh_element(3,e)))) :: homogenization_isostrain_postResults
ip, & !< integration point number
el !< element number
real(pReal), dimension(homogenization_isostrain_sizePostResults &
(homogenization_typeInstance(mesh_element(3,el)))) :: &
homogenization_isostrain_postResults
integer(pInt) :: &
homID, &
o, c
c = 0_pInt
homID = homogenization_typeInstance(mesh_element(3,e))
homID = homogenization_typeInstance(mesh_element(3,el))
homogenization_isostrain_postResults = 0.0_pReal
do o = 1_pInt,homogenization_Noutput(mesh_element(3,e))
do o = 1_pInt,homogenization_Noutput(mesh_element(3,el))
select case(homogenization_isostrain_output(o,homID))
case ('ngrains')
homogenization_isostrain_postResults(c+1_pInt) = real(homogenization_isostrain_Ngrains(homID),pReal)