renumbering asciitable when readArray for selected columns only
test no longer for deleteColumn
This commit is contained in:
parent
8bf7a7ef6a
commit
b60f868a76
|
@ -259,8 +259,11 @@ class ASCIItable():
|
|||
'''
|
||||
|
||||
if labels == []: indices = range(self.__IO__['validReadSize']) # use all columns
|
||||
else: indices = self.labels_index(labels) # use specified columns
|
||||
|
||||
else:
|
||||
indices = self.labels_index(labels) # use specified columns
|
||||
dictionary = dict(zip(indices, labels))
|
||||
self.labels_index = range(len(dictionary))
|
||||
self.labels = [dictionary[label] for label in sorted(dictionary)]
|
||||
try:
|
||||
self.data_rewind() # try to wind back to start of data
|
||||
except:
|
||||
|
|
|
@ -10,11 +10,6 @@ import damask
|
|||
scriptID = string.replace('$Id$','\n','\\n')
|
||||
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
#> @brief calculates curl field using differentation in Fourier space
|
||||
#> @todo enable odd resolution
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
|
||||
def curlFFT(geomdim,field):
|
||||
grid = np.array(np.shape(field)[0:3])
|
||||
wgt = 1.0/np.array(grid).prod()
|
||||
|
@ -80,12 +75,10 @@ parser.add_option('-v','--vector', dest='vector', action='extend', metavar=
|
|||
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
|
||||
help='heading of columns containing tensor field values')
|
||||
parser.set_defaults(coords = 'ipinitialcoord')
|
||||
parser.set_defaults(vector = [])
|
||||
parser.set_defaults(tensor = [])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if len(options.vector) + len(options.tensor) == 0:
|
||||
if options.vector == None and options.tensor == None:
|
||||
parser.error('no data column specified...')
|
||||
|
||||
datainfo = { # list of requested labels per datatype
|
||||
|
@ -102,35 +95,33 @@ if options.tensor != None: datainfo['tensor']['label'] = options.tensor
|
|||
|
||||
# ------------------------------------------ setup file handles ------------------------------------
|
||||
files = []
|
||||
if filenames == []:
|
||||
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
||||
else:
|
||||
for name in filenames:
|
||||
if os.path.exists(name):
|
||||
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||||
|
||||
#--- loop over input files -------------------------------------------------------------------------
|
||||
for file in files:
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.data_readArray()
|
||||
|
||||
# --------------- figure out columns for coordinates and vector/tensor fields to process ---------
|
||||
column = defaultdict(dict)
|
||||
pos = 0 # when reading in the table via data_readArray, the first key is at colum 0
|
||||
try:
|
||||
column['coords'] = pos
|
||||
pos+=3 # advance by data len (columns) for next key
|
||||
keys=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
|
||||
except ValueError:
|
||||
try:
|
||||
column['coords'] = pos
|
||||
pos+=3 # advance by data len (columns) for next key
|
||||
# --------------- figure out name of coordinate data (support for legacy .x notation) -------------
|
||||
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
|
||||
if not set(coordLabels).issubset(table.labels):
|
||||
directions = ['x','y','z']
|
||||
keys=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
|
||||
except ValueError:
|
||||
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
|
||||
if not set(coordLabels).issubset(table.labels):
|
||||
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
|
||||
continue
|
||||
coordColumns = [table.labels.index(label) for label in coordLabels]
|
||||
|
||||
# --------------- figure out active columns -------------------------------------------------------
|
||||
active = defaultdict(list)
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
|
@ -139,13 +130,10 @@ for file in files:
|
|||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
active[datatype].append(label)
|
||||
column[label] = pos
|
||||
pos+=datainfo[datatype]['len']
|
||||
keys+=['%i_%s'%(i+1,label) for i in xrange(datainfo[datatype]['len'])] # extend ASCII header with new labels
|
||||
|
||||
table.data_readArray(keys)
|
||||
|
||||
# --------------- assemble new header (columns containing curl) -----------------------------------
|
||||
# --------------- assemble new header (metadata and columns containing curl) ----------------------
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels:
|
||||
table.labels_append(['%i_curlFFT(%s)'%(i+1,label) for i in xrange(datainfo[datatype]['len'])])# extend ASCII header with new labels
|
||||
|
@ -155,10 +143,8 @@ for file in files:
|
|||
coords = [{},{},{}]
|
||||
for i in xrange(table.data.shape[0]):
|
||||
for j in xrange(3):
|
||||
coords[j][str(table.data[i,j])] = True # remember coordinate along x,y,z
|
||||
grid = np.array([len(coords[0]),\
|
||||
len(coords[1]),\
|
||||
len(coords[2]),],'i') # grid is number of distinct coordinates found
|
||||
coords[j][str(table.data[i,coordColumns[j]])] = True
|
||||
grid = np.array(map(len,coords),'i')
|
||||
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
|
||||
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
|
||||
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
|
||||
|
@ -170,28 +156,25 @@ for file in files:
|
|||
mask[i]=0
|
||||
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
|
||||
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
curl = defaultdict(dict)
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested curls
|
||||
startColumn=table.labels.index('1_'+label)
|
||||
curl[datatype][label] = curlFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
table.data[:,column[label]:column[label]+datainfo[datatype]['len']].\
|
||||
table.data[:,startColumn:startColumn+datainfo[datatype]['len']].\
|
||||
reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape']))
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
table.data_rewind()
|
||||
idx = 0
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
|
||||
# ------------------------------------------ add data ------------------------------------------
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested norms
|
||||
table.data_append(list(curl[datatype][label][idx,:]))
|
||||
idx+=1
|
||||
outputAlive = table.data_write() # output processed line
|
||||
for label in labels: # loop over all requested curls
|
||||
for c in xrange(curl[datatype][label][0,:].shape[0]): # append column by column
|
||||
lastRow = table.data.shape[1]
|
||||
table.data=np.insert(table.data,lastRow,curl[datatype][label][:,c],1)
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
table.input_close() # close input ASCII table
|
||||
table.output_close() # close output ASCII table
|
||||
table.data_writeArray('%.12g')
|
||||
table.input_close() # close input ASCII table (works for stdin)
|
||||
table.output_close() # close output ASCII table (works for stdout)
|
||||
if file['name'] != 'STDIN':
|
||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||
|
|
|
@ -106,11 +106,11 @@ parser.set_defaults(scale = 1.0)
|
|||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.type == None:
|
||||
parser.error('please select a feature type')
|
||||
parser.error('no feature type selected...')
|
||||
if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))):
|
||||
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
if 'biplane' in options.type and 'boundary' in options.type:
|
||||
parser.error("both aliases 'biplane' and 'boundary' are selected")
|
||||
parser.error("both aliases 'biplane' and 'boundary' are selected...")
|
||||
|
||||
feature_list = []
|
||||
for i,feature in enumerate(features):
|
||||
|
@ -131,45 +131,44 @@ for file in files:
|
|||
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.data_readArray()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
try:
|
||||
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
|
||||
except ValueError:
|
||||
try:
|
||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme)
|
||||
except ValueError:
|
||||
file['croak'].write('no coordinate data (1_%s/%s.x) found...\n'%(options.coords,options.coords))
|
||||
# --------------- figure out name of coordinate data (support for legacy .x notation) ------------
|
||||
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
|
||||
if not set(coordLabels).issubset(table.labels):
|
||||
directions = ['x','y','z']
|
||||
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
|
||||
if not set(coordLabels).issubset(table.labels):
|
||||
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
|
||||
continue
|
||||
coordColumns = [table.labels.index(label) for label in coordLabels]
|
||||
|
||||
# --------------- figure out active column --------------------------------------------------------
|
||||
if options.id not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%options.id)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for feature in feature_list:
|
||||
table.labels_append('ED_%s(%s)'%(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
|
||||
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
||||
table.data_readArray(['1_'+options.coords,'2_'+options.coords,'3_'+options.coords,options.id])
|
||||
|
||||
# --------------- figure out grid -----------------------------------------------------------------
|
||||
coords = [{},{},{}]
|
||||
for i in xrange(len(table.data)):
|
||||
for j in xrange(3):
|
||||
coords[j][str(table.data[i,j])] = True
|
||||
|
||||
coords[j][str(table.data[i,coordColumns[j]])] = True
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
unitlength = 0.0
|
||||
for i,r in enumerate(grid):
|
||||
if r > 1: unitlength = max(unitlength,(max(map(float,coords[i].keys()))-min(map(float,coords[i].keys())))/(r-1.0))
|
||||
|
||||
neighborhood = neighborhoods[options.neighborhood]
|
||||
convoluted = np.empty([len(neighborhood)]+list(grid+2),'i')
|
||||
microstructure = periodic_3Dpad(np.array(table.data[:,3].reshape(grid),'i'))
|
||||
microstructure = periodic_3Dpad(np.array(table.data[:,table.labels.index(options.id)].reshape(grid),'i'))
|
||||
|
||||
for i,p in enumerate(neighborhood):
|
||||
stencil = np.zeros((3,3,3),'i')
|
||||
|
@ -197,18 +196,14 @@ for file in files:
|
|||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
distance.shape = (len(feature_list),grid.prod())
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
table.data_rewind()
|
||||
l = 0
|
||||
while table.data_read():
|
||||
# ------------------------------------------ add data ------------------------------------------
|
||||
for i in xrange(len(feature_list)):
|
||||
table.data_append(distance[i,l]) # add all distance fields
|
||||
l += 1
|
||||
outputAlive = table.data_write() # output processed line
|
||||
lastRow = table.data.shape[1]
|
||||
table.data=np.insert(table.data,lastRow,distance[i,:],1)
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
table.input_close() # close input ASCII table
|
||||
table.output_close() # close output ASCII table
|
||||
table.data_writeArray('%.12g')
|
||||
table.input_close() # close input ASCII table (works for stdin)
|
||||
table.output_close() # close output ASCII table (works for stdout)
|
||||
if file['name'] != 'STDIN':
|
||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||
|
|
|
@ -60,20 +60,16 @@ if options.asciitable != None and os.path.isfile(options.asciitable):
|
|||
mappedTable.head_read() # read ASCII header info of mapped table
|
||||
|
||||
labels = []
|
||||
indices = []
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = '1_'+label if info['len'] > 1 else label
|
||||
if key in mappedTable.labels:
|
||||
labels.append(label) # extend labels
|
||||
indices += range(mappedTable.labels.index(key),
|
||||
mappedTable.labels.index(key)+datainfo[datatype]['len'])
|
||||
keys = ['%i_'%(i+1)+label for i in xrange(info['len'])] if info['len'] > 1 else [label]
|
||||
if set(keys).issubset(mappedTable.labels):
|
||||
labels+=keys # extend labels
|
||||
else:
|
||||
sys.stderr.write('column %s not found...\n'%label)
|
||||
break
|
||||
|
||||
mappedTable.data_readArray(indices)
|
||||
mappedTable.data_readArray(labels)
|
||||
mappedTable.input_close() # close mapped input ASCII table
|
||||
|
||||
else:
|
||||
|
@ -95,17 +91,15 @@ for file in files:
|
|||
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
if options.map not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%options.map)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
table.labels_append(label if info['len'] == 1 else \
|
||||
['%i_%s'%(i+1,label) for i in xrange(info['len'])]) # extend ASCII header of current table with new labels
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for label in mappedTable.labels:
|
||||
table.labels_append(label)
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -56,23 +56,24 @@ datainfo = { # lis
|
|||
'label':[]},
|
||||
}
|
||||
|
||||
if not set(options.output).issubset(set(outputChoices)):
|
||||
if options.output == None or (not set(options.output).issubset(set(outputChoices))):
|
||||
parser.error('output must be chosen from %s...'%(', '.join(outputChoices)))
|
||||
|
||||
input=[]
|
||||
if options.eulers != None:
|
||||
datainfo['vector']['label'] += [options.eulers]
|
||||
input = 'eulers'
|
||||
input.append('eulers')
|
||||
if options.a != None and \
|
||||
options.b != None and \
|
||||
options.c != None:
|
||||
datainfo['vector']['label'] += [options.a,options.b,options.c]
|
||||
input = 'frame'
|
||||
input.append('frame')
|
||||
if options.matrix != None:
|
||||
datainfo['tensor']['label'] += [options.matrix]
|
||||
input = 'matrix'
|
||||
input.append('matrix')
|
||||
if options.quaternion != None:
|
||||
datainfo['quaternion']['label'] += [options.quaternion]
|
||||
input = 'quaternion'
|
||||
input.append('quaternion')
|
||||
|
||||
if len(input) != 1: parser.error('needs exactly one input format...')
|
||||
input = input[0]
|
||||
|
|
|
@ -55,12 +55,9 @@ for file in files:
|
|||
file['croak'].write('column %s not found...\n'%key)
|
||||
missingColumns=True
|
||||
if missingColumns: continue
|
||||
active = defaultdict(list)
|
||||
column = defaultdict(dict)
|
||||
missingColumns = False
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
table.labels_append(['%i_S'%(i+1) for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_S'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -82,27 +82,19 @@ for name in filenames:
|
|||
table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
|
||||
# --------------- figure out columns to process ---------------------------------------------------
|
||||
# --------------- figure out columns to process and read ------------------------------------------
|
||||
active = []
|
||||
column = {}
|
||||
|
||||
for label in datainfo['scalar']['label']:
|
||||
if label in table.labels:
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(label) # remember columns of requested data
|
||||
else:
|
||||
file['croak'].write('column %s not found...\n'%label)
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
table.info_clear()
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels = ['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z']
|
||||
table.head_write()
|
||||
table.data_readArray([label for label in active])
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
table.data_readArray([column[label] for label in active])
|
||||
|
||||
for i in (0,1): # check data minmax for x and y
|
||||
for j in (0,1): # check data minmax for x and y
|
||||
i = table.labels.index(options.data[j])
|
||||
if (minmax[i] == 0.0).all(): minmax[i] = [table.data[:,i].min(),table.data[:,i].max()]
|
||||
if options.type[i].lower() == 'log': # if log scale
|
||||
table.data[:,i] = np.log(table.data[:,i]) # change x,y coordinates to log
|
||||
|
@ -110,11 +102,14 @@ for name in filenames:
|
|||
|
||||
delta = minmax[:,1]-minmax[:,0]
|
||||
|
||||
xCol = table.labels.index(options.data[0])
|
||||
yCol = table.labels.index(options.data[1])
|
||||
if options.weight != None: wCol = table.labels.index(options.weight)
|
||||
for i in xrange(len(table.data)):
|
||||
x = int(options.bins[0]*(table.data[i,0]-minmax[0,0])/delta[0])
|
||||
y = int(options.bins[1]*(table.data[i,1]-minmax[1,0])/delta[1])
|
||||
x = int(options.bins[0]*(table.data[i,xCol]-minmax[0,0])/delta[0])
|
||||
y = int(options.bins[1]*(table.data[i,yCol]-minmax[1,0])/delta[1])
|
||||
if x >= 0 and x < options.bins[0] and y >= 0 and y < options.bins[1]:
|
||||
grid[x,y] += 1. if options.weight == None else table.data[i,2] # count (weighted) occurrences
|
||||
grid[x,y] += 1. if options.weight == None else table.data[i,wCol] # count (weighted) occurrences
|
||||
|
||||
if options.normCol:
|
||||
for x in xrange(options.bins[0]):
|
||||
|
@ -151,6 +146,12 @@ for name in filenames:
|
|||
|
||||
if options.invert: result[:,:,2] = 1.0 - result[:,:,2]
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
table.info_clear()
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels = ['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z']
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
prefix = 'binned%s-%s_'%(options.data[0],options.data[1])+ \
|
||||
('weighted%s_'%(options.weight) if options.weight != None else '')
|
||||
|
|
|
@ -149,6 +149,9 @@ for file in files:
|
|||
|
||||
newInfo['size'] = info['size']/info['grid']*newInfo['grid']
|
||||
newInfo['origin'] = info['origin']+info['size']/info['grid']*options.offset
|
||||
a = np.bincount(microstructure_cropped.flatten())
|
||||
b = np.nonzero(a)[0]
|
||||
y = np.size(b)
|
||||
newInfo['microstructures'] = microstructure_cropped.max()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue