renumbering asciitable when readArray for selected columns only

test no longer for deleteColumn
This commit is contained in:
Martin Diehl 2015-05-10 11:29:11 +00:00
parent 8bf7a7ef6a
commit b60f868a76
8 changed files with 117 additions and 140 deletions

View File

@ -259,8 +259,11 @@ class ASCIItable():
''' '''
if labels == []: indices = range(self.__IO__['validReadSize']) # use all columns if labels == []: indices = range(self.__IO__['validReadSize']) # use all columns
else: indices = self.labels_index(labels) # use specified columns else:
indices = self.labels_index(labels) # use specified columns
dictionary = dict(zip(indices, labels))
self.labels_index = range(len(dictionary))
self.labels = [dictionary[label] for label in sorted(dictionary)]
try: try:
self.data_rewind() # try to wind back to start of data self.data_rewind() # try to wind back to start of data
except: except:

View File

@ -10,11 +10,6 @@ import damask
scriptID = string.replace('$Id$','\n','\\n') scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0] scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
#> @brief calculates curl field using differentation in Fourier space
#> @todo enable odd resolution
#--------------------------------------------------------------------------------------------------
def curlFFT(geomdim,field): def curlFFT(geomdim,field):
grid = np.array(np.shape(field)[0:3]) grid = np.array(np.shape(field)[0:3])
wgt = 1.0/np.array(grid).prod() wgt = 1.0/np.array(grid).prod()
@ -80,12 +75,10 @@ parser.add_option('-v','--vector', dest='vector', action='extend', metavar=
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>', parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values') help='heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord') parser.set_defaults(coords = 'ipinitialcoord')
parser.set_defaults(vector = [])
parser.set_defaults(tensor = [])
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if len(options.vector) + len(options.tensor) == 0: if options.vector == None and options.tensor == None:
parser.error('no data column specified...') parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype datainfo = { # list of requested labels per datatype
@ -102,35 +95,33 @@ if options.tensor != None: datainfo['tensor']['label'] = options.tensor
# ------------------------------------------ setup file handles ------------------------------------ # ------------------------------------------ setup file handles ------------------------------------
files = [] files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames: for name in filenames:
if os.path.exists(name): if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files ------------------------------------------------------------------------- #--- loop over input files -------------------------------------------------------------------------
for file in files: for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.data_readArray()
# --------------- figure out columns for coordinates and vector/tensor fields to process --------- # --------------- figure out name of coordinate data (support for legacy .x notation) -------------
column = defaultdict(dict) coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
pos = 0 # when reading in the table via data_readArray, the first key is at colum 0 if not set(coordLabels).issubset(table.labels):
try:
column['coords'] = pos
pos+=3 # advance by data len (columns) for next key
keys=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
except ValueError:
try:
column['coords'] = pos
pos+=3 # advance by data len (columns) for next key
directions = ['x','y','z'] directions = ['x','y','z']
keys=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
except ValueError: if not set(coordLabels).issubset(table.labels):
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords) file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
continue continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# --------------- figure out active columns -------------------------------------------------------
active = defaultdict(list) active = defaultdict(list)
for datatype,info in datainfo.items(): for datatype,info in datainfo.items():
for label in info['label']: for label in info['label']:
@ -139,13 +130,10 @@ for file in files:
file['croak'].write('column %s not found...\n'%key) file['croak'].write('column %s not found...\n'%key)
else: else:
active[datatype].append(label) active[datatype].append(label)
column[label] = pos
pos+=datainfo[datatype]['len']
keys+=['%i_%s'%(i+1,label) for i in xrange(datainfo[datatype]['len'])] # extend ASCII header with new labels
table.data_readArray(keys)
# --------------- assemble new header (columns containing curl) ----------------------------------- # --------------- assemble new header (metadata and columns containing curl) ----------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for datatype,labels in active.items(): # loop over vector,tensor for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: for label in labels:
table.labels_append(['%i_curlFFT(%s)'%(i+1,label) for i in xrange(datainfo[datatype]['len'])])# extend ASCII header with new labels table.labels_append(['%i_curlFFT(%s)'%(i+1,label) for i in xrange(datainfo[datatype]['len'])])# extend ASCII header with new labels
@ -155,10 +143,8 @@ for file in files:
coords = [{},{},{}] coords = [{},{},{}]
for i in xrange(table.data.shape[0]): for i in xrange(table.data.shape[0]):
for j in xrange(3): for j in xrange(3):
coords[j][str(table.data[i,j])] = True # remember coordinate along x,y,z coords[j][str(table.data[i,coordColumns[j]])] = True
grid = np.array([len(coords[0]),\ grid = np.array(map(len,coords),'i')
len(coords[1]),\
len(coords[2]),],'i') # grid is number of distinct coordinates found
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \ size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\ np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\ max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
@ -170,28 +156,25 @@ for file in files:
mask[i]=0 mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
# ------------------------------------------ process value field ----------------------------------- # ------------------------------------------ process value field -----------------------------------
curl = defaultdict(dict) curl = defaultdict(dict)
for datatype,labels in active.items(): # loop over vector,tensor for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls for label in labels: # loop over all requested curls
startColumn=table.labels.index('1_'+label)
curl[datatype][label] = curlFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation curl[datatype][label] = curlFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,column[label]:column[label]+datainfo[datatype]['len']].\ table.data[:,startColumn:startColumn+datainfo[datatype]['len']].\
reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape'])) reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape']))
# ------------------------------------------ process data ------------------------------------------
table.data_rewind() # ------------------------------------------ add data ------------------------------------------
idx = 0
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms for label in labels: # loop over all requested curls
table.data_append(list(curl[datatype][label][idx,:])) for c in xrange(curl[datatype][label][0,:].shape[0]): # append column by column
idx+=1 lastRow = table.data.shape[1]
outputAlive = table.data_write() # output processed line table.data=np.insert(table.data,lastRow,curl[datatype][label][:,c],1)
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.input_close() # close input ASCII table table.output_close() # close output ASCII table (works for stdout)
table.output_close() # close output ASCII table if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -106,11 +106,11 @@ parser.set_defaults(scale = 1.0)
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if options.type == None: if options.type == None:
parser.error('please select a feature type') parser.error('no feature type selected...')
if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))): if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))):
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:'|'.join(x['names']),features))) ) parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
if 'biplane' in options.type and 'boundary' in options.type: if 'biplane' in options.type and 'boundary' in options.type:
parser.error("both aliases 'biplane' and 'boundary' are selected") parser.error("both aliases 'biplane' and 'boundary' are selected...")
feature_list = [] feature_list = []
for i,feature in enumerate(features): for i,feature in enumerate(features):
@ -131,45 +131,44 @@ for file in files:
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.data_readArray()
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out name of coordinate data (support for legacy .x notation) ------------
try: coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data if not set(coordLabels).issubset(table.labels):
except ValueError: directions = ['x','y','z']
try: coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme) if not set(coordLabels).issubset(table.labels):
except ValueError: file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
file['croak'].write('no coordinate data (1_%s/%s.x) found...\n'%(options.coords,options.coords))
continue continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# --------------- figure out active column --------------------------------------------------------
if options.id not in table.labels: if options.id not in table.labels:
file['croak'].write('column %s not found...\n'%options.id) file['croak'].write('column %s not found...\n'%options.id)
continue continue
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for feature in feature_list: for feature in feature_list:
table.labels_append('ED_%s(%s)'%(features[feature]['names'][0],options.id)) # extend ASCII header with new labels table.labels_append('ED_%s(%s)'%(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # --------------- figure out grid -----------------------------------------------------------------
table.data_readArray(['1_'+options.coords,'2_'+options.coords,'3_'+options.coords,options.id])
coords = [{},{},{}] coords = [{},{},{}]
for i in xrange(len(table.data)): for i in xrange(len(table.data)):
for j in xrange(3): for j in xrange(3):
coords[j][str(table.data[i,j])] = True coords[j][str(table.data[i,coordColumns[j]])] = True
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
# ------------------------------------------ process value field -----------------------------------
unitlength = 0.0 unitlength = 0.0
for i,r in enumerate(grid): for i,r in enumerate(grid):
if r > 1: unitlength = max(unitlength,(max(map(float,coords[i].keys()))-min(map(float,coords[i].keys())))/(r-1.0)) if r > 1: unitlength = max(unitlength,(max(map(float,coords[i].keys()))-min(map(float,coords[i].keys())))/(r-1.0))
neighborhood = neighborhoods[options.neighborhood] neighborhood = neighborhoods[options.neighborhood]
convoluted = np.empty([len(neighborhood)]+list(grid+2),'i') convoluted = np.empty([len(neighborhood)]+list(grid+2),'i')
microstructure = periodic_3Dpad(np.array(table.data[:,3].reshape(grid),'i')) microstructure = periodic_3Dpad(np.array(table.data[:,table.labels.index(options.id)].reshape(grid),'i'))
for i,p in enumerate(neighborhood): for i,p in enumerate(neighborhood):
stencil = np.zeros((3,3,3),'i') stencil = np.zeros((3,3,3),'i')
@ -197,18 +196,14 @@ for file in files:
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3 distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
distance.shape = (len(feature_list),grid.prod()) distance.shape = (len(feature_list),grid.prod())
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ add data ------------------------------------------
table.data_rewind()
l = 0
while table.data_read():
for i in xrange(len(feature_list)): for i in xrange(len(feature_list)):
table.data_append(distance[i,l]) # add all distance fields lastRow = table.data.shape[1]
l += 1 table.data=np.insert(table.data,lastRow,distance[i,:],1)
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.input_close() # close input ASCII table table.output_close() # close output ASCII table (works for stdout)
table.output_close() # close output ASCII table if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -60,20 +60,16 @@ if options.asciitable != None and os.path.isfile(options.asciitable):
mappedTable.head_read() # read ASCII header info of mapped table mappedTable.head_read() # read ASCII header info of mapped table
labels = [] labels = []
indices = []
for datatype,info in datainfo.items(): for datatype,info in datainfo.items():
for label in info['label']: for label in info['label']:
key = '1_'+label if info['len'] > 1 else label keys = ['%i_'%(i+1)+label for i in xrange(info['len'])] if info['len'] > 1 else [label]
if key in mappedTable.labels: if set(keys).issubset(mappedTable.labels):
labels.append(label) # extend labels labels+=keys # extend labels
indices += range(mappedTable.labels.index(key),
mappedTable.labels.index(key)+datainfo[datatype]['len'])
else: else:
sys.stderr.write('column %s not found...\n'%label) sys.stderr.write('column %s not found...\n'%label)
break break
mappedTable.data_readArray(indices) mappedTable.data_readArray(labels)
mappedTable.input_close() # close mapped input ASCII table mappedTable.input_close() # close mapped input ASCII table
else: else:
@ -95,17 +91,15 @@ for file in files:
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
if options.map not in table.labels: if options.map not in table.labels:
file['croak'].write('column %s not found...\n'%options.map) file['croak'].write('column %s not found...\n'%options.map)
continue continue
# ------------------------------------------ assemble header -------------------------------------- # ------------------------------------------ assemble header --------------------------------------
for datatype,info in datainfo.items(): table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for label in info['label']: for label in mappedTable.labels:
table.labels_append(label if info['len'] == 1 else \ table.labels_append(label)
['%i_%s'%(i+1,label) for i in xrange(info['len'])]) # extend ASCII header of current table with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -56,23 +56,24 @@ datainfo = { # lis
'label':[]}, 'label':[]},
} }
if not set(options.output).issubset(set(outputChoices)): if options.output == None or (not set(options.output).issubset(set(outputChoices))):
parser.error('output must be chosen from %s...'%(', '.join(outputChoices))) parser.error('output must be chosen from %s...'%(', '.join(outputChoices)))
input=[]
if options.eulers != None: if options.eulers != None:
datainfo['vector']['label'] += [options.eulers] datainfo['vector']['label'] += [options.eulers]
input = 'eulers' input.append('eulers')
if options.a != None and \ if options.a != None and \
options.b != None and \ options.b != None and \
options.c != None: options.c != None:
datainfo['vector']['label'] += [options.a,options.b,options.c] datainfo['vector']['label'] += [options.a,options.b,options.c]
input = 'frame' input.append('frame')
if options.matrix != None: if options.matrix != None:
datainfo['tensor']['label'] += [options.matrix] datainfo['tensor']['label'] += [options.matrix]
input = 'matrix' input.append('matrix')
if options.quaternion != None: if options.quaternion != None:
datainfo['quaternion']['label'] += [options.quaternion] datainfo['quaternion']['label'] += [options.quaternion]
input = 'quaternion' input.append('quaternion')
if len(input) != 1: parser.error('needs exactly one input format...') if len(input) != 1: parser.error('needs exactly one input format...')
input = input[0] input = input[0]

View File

@ -55,12 +55,9 @@ for file in files:
file['croak'].write('column %s not found...\n'%key) file['croak'].write('column %s not found...\n'%key)
missingColumns=True missingColumns=True
if missingColumns: continue if missingColumns: continue
active = defaultdict(list)
column = defaultdict(dict)
missingColumns = False
# ------------------------------------------ assemble header -------------------------------------- # ------------------------------------------ assemble header --------------------------------------
table.labels_append(['%i_S'%(i+1) for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels table.labels_append(['%i_S'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -82,27 +82,19 @@ for name in filenames:
table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
# --------------- figure out columns to process --------------------------------------------------- # --------------- figure out columns to process and read ------------------------------------------
active = [] active = []
column = {}
for label in datainfo['scalar']['label']: for label in datainfo['scalar']['label']:
if label in table.labels: if label in table.labels:
active.append(label) active.append(label)
column[label] = table.labels.index(label) # remember columns of requested data
else: else:
file['croak'].write('column %s not found...\n'%label) file['croak'].write('column %s not found...\n'%label)
# ------------------------------------------ assemble header --------------------------------------- table.data_readArray([label for label in active])
table.info_clear()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels = ['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z']
table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------
table.data_readArray([column[label] for label in active]) for j in (0,1): # check data minmax for x and y
i = table.labels.index(options.data[j])
for i in (0,1): # check data minmax for x and y
if (minmax[i] == 0.0).all(): minmax[i] = [table.data[:,i].min(),table.data[:,i].max()] if (minmax[i] == 0.0).all(): minmax[i] = [table.data[:,i].min(),table.data[:,i].max()]
if options.type[i].lower() == 'log': # if log scale if options.type[i].lower() == 'log': # if log scale
table.data[:,i] = np.log(table.data[:,i]) # change x,y coordinates to log table.data[:,i] = np.log(table.data[:,i]) # change x,y coordinates to log
@ -110,11 +102,14 @@ for name in filenames:
delta = minmax[:,1]-minmax[:,0] delta = minmax[:,1]-minmax[:,0]
xCol = table.labels.index(options.data[0])
yCol = table.labels.index(options.data[1])
if options.weight != None: wCol = table.labels.index(options.weight)
for i in xrange(len(table.data)): for i in xrange(len(table.data)):
x = int(options.bins[0]*(table.data[i,0]-minmax[0,0])/delta[0]) x = int(options.bins[0]*(table.data[i,xCol]-minmax[0,0])/delta[0])
y = int(options.bins[1]*(table.data[i,1]-minmax[1,0])/delta[1]) y = int(options.bins[1]*(table.data[i,yCol]-minmax[1,0])/delta[1])
if x >= 0 and x < options.bins[0] and y >= 0 and y < options.bins[1]: if x >= 0 and x < options.bins[0] and y >= 0 and y < options.bins[1]:
grid[x,y] += 1. if options.weight == None else table.data[i,2] # count (weighted) occurrences grid[x,y] += 1. if options.weight == None else table.data[i,wCol] # count (weighted) occurrences
if options.normCol: if options.normCol:
for x in xrange(options.bins[0]): for x in xrange(options.bins[0]):
@ -151,6 +146,12 @@ for name in filenames:
if options.invert: result[:,:,2] = 1.0 - result[:,:,2] if options.invert: result[:,:,2] = 1.0 - result[:,:,2]
# ------------------------------------------ assemble header ---------------------------------------
table.info_clear()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels = ['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z']
table.head_write()
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------
prefix = 'binned%s-%s_'%(options.data[0],options.data[1])+ \ prefix = 'binned%s-%s_'%(options.data[0],options.data[1])+ \
('weighted%s_'%(options.weight) if options.weight != None else '') ('weighted%s_'%(options.weight) if options.weight != None else '')

View File

@ -149,6 +149,9 @@ for file in files:
newInfo['size'] = info['size']/info['grid']*newInfo['grid'] newInfo['size'] = info['size']/info['grid']*newInfo['grid']
newInfo['origin'] = info['origin']+info['size']/info['grid']*options.offset newInfo['origin'] = info['origin']+info['size']/info['grid']*options.offset
a = np.bincount(microstructure_cropped.flatten())
b = np.nonzero(a)[0]
y = np.size(b)
newInfo['microstructures'] = microstructure_cropped.max() newInfo['microstructures'] = microstructure_cropped.max()