ASCIItable -> Table
This commit is contained in:
parent
1c75198af5
commit
b5a1295cb9
|
@ -2,6 +2,7 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
from io import StringIO
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
@ -71,60 +72,30 @@ parser.set_defaults(bins = (10,10),
|
|||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
minmax = np.array([np.array(options.xrange),
|
||||
np.array(options.yrange),
|
||||
np.array(options.zrange)])
|
||||
grid = np.zeros(options.bins,'f')
|
||||
result = np.zeros((options.bins[0],options.bins[1],3),'f')
|
||||
minmax = np.array([options.xrange,options.yrange,options.zrange])
|
||||
result = np.empty((options.bins[0],options.bins[1],3),'f')
|
||||
|
||||
if options.data is None: parser.error('no data columns specified.')
|
||||
|
||||
labels = list(options.data)
|
||||
|
||||
|
||||
if options.weight is not None: labels += [options.weight] # prevent character splitting of single string value
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
outname = os.path.join(os.path.dirname(name),
|
||||
'binned-{}-{}_'.format(*options.data) +
|
||||
('weighted-{}_'.format(options.weight) if options.weight else '') +
|
||||
os.path.basename(name)) if name else name)
|
||||
except IOError:
|
||||
continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
missing_labels = table.data_readArray(labels)
|
||||
|
||||
if len(missing_labels) > 0:
|
||||
damask.util.croak('column{} {} not found.'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
data = np.hstack((table.get(options.data[0]),table.get(options.data[1])))
|
||||
|
||||
for c in (0,1): # check data minmax for x and y (i = 0 and 1)
|
||||
if (minmax[c] == 0.0).all(): minmax[c] = [table.data[:,c].min(),table.data[:,c].max()]
|
||||
if (minmax[c] == 0.0).all(): minmax[c] = [data[:,c].min(),data[:,c].max()]
|
||||
if options.type[c].lower() == 'log': # if log scale
|
||||
table.data[:,c] = np.log(table.data[:,c]) # change x,y coordinates to log
|
||||
data[:,c] = np.log(data[:,c]) # change x,y coordinates to log
|
||||
minmax[c] = np.log(minmax[c]) # change minmax to log, too
|
||||
|
||||
delta = minmax[:,1]-minmax[:,0]
|
||||
(grid,xedges,yedges) = np.histogram2d(table.data[:,0],table.data[:,1],
|
||||
(grid,xedges,yedges) = np.histogram2d(data[:,0],data[:,1],
|
||||
bins=options.bins,
|
||||
range=minmax[:2],
|
||||
weights=None if options.weight is None else table.data[:,2])
|
||||
|
||||
weights=table.get(options.weight) if options.weight else None)
|
||||
if options.normCol:
|
||||
for x in range(options.bins[0]):
|
||||
sum = np.sum(grid[x,:])
|
||||
|
@ -153,24 +124,20 @@ for name in filenames:
|
|||
for y in range(options.bins[1]):
|
||||
result[x,y,:] = [minmax[0,0]+delta[0]/options.bins[0]*(x+0.5),
|
||||
minmax[1,0]+delta[1]/options.bins[1]*(y+0.5),
|
||||
min(1.0,max(0.0,(grid[x,y]-minmax[2,0])/delta[2]))]
|
||||
np.clip((grid[x,y]-minmax[2,0])/delta[2],0.0,1.0)]
|
||||
|
||||
for c in (0,1):
|
||||
if options.type[c].lower() == 'log': result[:,:,c] = np.exp(result[:,:,c])
|
||||
|
||||
if options.invert: result[:,:,2] = 1.0 - result[:,:,2]
|
||||
|
||||
# --- assemble header -------------------------------------------------------------------------------
|
||||
|
||||
table.info_clear()
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_clear()
|
||||
table.labels_append(['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z'])
|
||||
table.head_write()
|
||||
|
||||
# --- output result ---------------------------------------------------------------------------------
|
||||
|
||||
table.data = result.reshape(options.bins[0]*options.bins[1],3)
|
||||
table.data_writeArray()
|
||||
|
||||
table.close()
|
||||
comments = scriptID + '\t' + ' '.join(sys.argv[1:])
|
||||
shapes = {'bin_%s'%options.data[0]:(1,),'bin_%s'%options.data[1]:(1,),'z':(1,)}
|
||||
table = damask.Table(result.reshape(options.bins[0]*options.bins[1],3),shapes,[comments])
|
||||
if name:
|
||||
outname = os.path.join(os.path.dirname(name),'binned-{}-{}_'.format(*options.data) +
|
||||
('weighted-{}_'.format(options.weight) if options.weight else '') +
|
||||
os.path.basename(name))
|
||||
table.to_ASCII(outname)
|
||||
else:
|
||||
table.to_ASCII(sys.stdout)
|
||||
|
|
|
@ -255,8 +255,8 @@ for name in filenames:
|
|||
table.data_readArray(labels)
|
||||
coords = table.data[:,table.label_indexrange(options.pos)] * info['size'] if options.normalized \
|
||||
else table.data[:,table.label_indexrange(options.pos)] - info['origin']
|
||||
eulers = table.data[:,table.label_indexrange(options.eulers)] if hasEulers \
|
||||
else np.zeros(3*len(coords))
|
||||
if hasEulers:
|
||||
eulers = table.data[:,table.label_indexrange(options.eulers)]
|
||||
grains = table.data[:,table.label_indexrange(options.microstructure)].astype(int) if hasGrains \
|
||||
else np.arange(len(coords))+1
|
||||
|
||||
|
|
|
@ -1,11 +1,16 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
import os,sys,math,random
|
||||
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
|
@ -223,54 +228,29 @@ parser.set_defaults(randomSeed = None,
|
|||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
nSamples = options.number
|
||||
methods = [options.algorithm]
|
||||
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name, readonly=True)
|
||||
except IOError:
|
||||
continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
randomSeed = int(os.urandom(4).hex(), 16) if options.randomSeed is None else options.randomSeed # random seed per file for second phase
|
||||
randomSeed = int(os.urandom(4).hex(),16) if options.randomSeed is None else options.randomSeed # random seed per file
|
||||
random.seed(randomSeed)
|
||||
|
||||
# ------------------------------------------ read header and data ---------------------------------
|
||||
table.head_read()
|
||||
|
||||
errors = []
|
||||
labels = ['1_euler','2_euler','3_euler','intensity']
|
||||
for i,index in enumerate(table.label_index(labels)):
|
||||
if index < 0: errors.append('label {} not present.'.format(labels[i]))
|
||||
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
table.data_readArray(labels)
|
||||
|
||||
# --------------- figure out limits (left/right), delta, and interval -----------------------------
|
||||
|
||||
ODF = {}
|
||||
limits = np.array([np.min(table.data[:,0:3],axis=0),
|
||||
np.max(table.data[:,0:3],axis=0)]) # min/max euler angles in degrees
|
||||
eulers = table.get('euler')
|
||||
limits = np.array([np.min(eulers,axis=0),np.max(eulers,axis=0)]) # min/max euler angles in degrees
|
||||
ODF['limit'] = np.radians(limits[1,:]) # right hand limits in radians
|
||||
ODF['center'] = 0.0 if all(limits[0,:]<1e-8) else 0.5 # vertex or cell centered
|
||||
|
||||
ODF['interval'] = np.array(list(map(len,[np.unique(table.data[:,i]) for i in range(3)])),'i') # steps are number of distict values
|
||||
ODF['interval'] = np.array(list(map(len,[np.unique(eulers[:,i]) for i in range(3)])),'i') # steps are number of distict values
|
||||
ODF['nBins'] = ODF['interval'].prod()
|
||||
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1)) # step size
|
||||
|
||||
if table.data.shape[0] != ODF['nBins']:
|
||||
damask.util.croak('expecting %i values but got %i'%(ODF['nBins'],table.data.shape[0]))
|
||||
if eulers.shape[0] != ODF['nBins']:
|
||||
damask.util.croak('expecting %i values but got %i'%(ODF['nBins'],eulers.shape[0]))
|
||||
continue
|
||||
|
||||
# ----- build binnedODF array and normalize ------------------------------------------------------
|
||||
|
@ -278,9 +258,10 @@ for name in filenames:
|
|||
ODF['dV_V'] = [None]*ODF['nBins']
|
||||
ODF['nNonZero'] = 0
|
||||
dg = ODF['delta'][0]*2.0*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
|
||||
intensity = table.get('intensity')
|
||||
for b in range(ODF['nBins']):
|
||||
ODF['dV_V'][b] = \
|
||||
max(0.0,table.data[b,table.label_index('intensity')]) * dg * \
|
||||
max(0.0,intensity[b,0]) * dg * \
|
||||
math.sin(((b//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
|
||||
if ODF['dV_V'][b] > 0.0:
|
||||
sumdV_V += ODF['dV_V'][b]
|
||||
|
@ -296,11 +277,10 @@ for name in filenames:
|
|||
'Reference Integral: %12.11f\n'%(ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))),
|
||||
])
|
||||
|
||||
# call methods
|
||||
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
|
||||
method = Functions[options.algorithm]
|
||||
|
||||
Orientations, ReconstructedODF = (globals()[method])(ODF,nSamples)
|
||||
Orientations, ReconstructedODF = (globals()[method])(ODF,options.number)
|
||||
|
||||
# calculate accuracy of sample
|
||||
squaredDiff = {'orig':0.0,method:0.0}
|
||||
|
@ -319,7 +299,7 @@ for name in filenames:
|
|||
indivSum['orig'] += ODF['dV_V'][bin]
|
||||
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
|
||||
|
||||
damask.util.croak(['sqrt(N*)RMSD of ODFs:\t %12.11f'% math.sqrt(nSamples*squaredDiff[method]),
|
||||
damask.util.croak(['sqrt(N*)RMSD of ODFs:\t %12.11f'% math.sqrt(options.number*squaredDiff[method]),
|
||||
'RMSrD of ODFs:\t %12.11f'%math.sqrt(squaredRelDiff[method]),
|
||||
'rMSD of ODFs:\t %12.11f'%(squaredDiff[method]/indivSquaredSum['orig']),
|
||||
'nNonZero correlation slope:\t %12.11f'\
|
||||
|
@ -331,10 +311,10 @@ for name in filenames:
|
|||
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))),
|
||||
])
|
||||
|
||||
if method == 'IA' and nSamples < ODF['nNonZero']:
|
||||
if method == 'IA' and options.number < ODF['nNonZero']:
|
||||
strOpt = '(%i)'%ODF['nNonZero']
|
||||
|
||||
formatwidth = 1+int(math.log10(nSamples))
|
||||
formatwidth = 1+int(math.log10(options.number))
|
||||
|
||||
materialConfig = [
|
||||
'#' + scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
|
@ -344,7 +324,7 @@ for name in filenames:
|
|||
'#-------------------#',
|
||||
]
|
||||
|
||||
for i,ID in enumerate(range(nSamples)):
|
||||
for i,ID in enumerate(range(options.number)):
|
||||
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
|
||||
'(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)),
|
||||
]
|
||||
|
@ -355,7 +335,7 @@ for name in filenames:
|
|||
'#-------------------#',
|
||||
]
|
||||
|
||||
for ID in range(nSamples):
|
||||
for ID in range(options.number):
|
||||
eulers = Orientations[ID]
|
||||
|
||||
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
|
||||
|
@ -364,7 +344,5 @@ for name in filenames:
|
|||
|
||||
#--- output finalization --------------------------------------------------------------------------
|
||||
|
||||
with (open(os.path.splitext(name)[0]+'_'+method+'_'+str(nSamples)+'_material.config','w')) as outfile:
|
||||
with (open(os.path.splitext(name)[0]+'_'+method+'_'+str(options.number)+'_material.config','w')) as outfile:
|
||||
outfile.write('\n'.join(materialConfig)+'\n')
|
||||
|
||||
table.close()
|
||||
|
|
|
@ -1,9 +1,15 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import threading,time,os,sys,random
|
||||
import numpy as np
|
||||
import threading
|
||||
import time
|
||||
import os
|
||||
import sys
|
||||
import random
|
||||
from optparse import OptionParser
|
||||
from io import StringIO
|
||||
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
|
@ -35,11 +41,11 @@ class myThread (threading.Thread):
|
|||
s.acquire()
|
||||
bestMatch = match
|
||||
s.release()
|
||||
|
||||
|
||||
random.seed(options.randomSeed+self.threadID) # initializes to given seeds
|
||||
knownSeedsUpdate = bestSeedsUpdate -1.0 # trigger update of local best seeds
|
||||
randReset = True # aquire new direction
|
||||
|
||||
|
||||
myBestSeedsVFile = StringIO() # store local copy of best seeds file
|
||||
perturbedSeedsVFile = StringIO() # perturbed best seeds file
|
||||
perturbedGeomVFile = StringIO() # tessellated geom file
|
||||
|
@ -49,14 +55,14 @@ class myThread (threading.Thread):
|
|||
s.acquire() # ensure only one thread acces global data
|
||||
if bestSeedsUpdate > knownSeedsUpdate: # write best fit to virtual file
|
||||
knownSeedsUpdate = bestSeedsUpdate
|
||||
bestSeedsVFile.reset()
|
||||
bestSeedsVFile.seek(0)
|
||||
myBestSeedsVFile.close()
|
||||
myBestSeedsVFile = StringIO()
|
||||
i=0
|
||||
for line in bestSeedsVFile:
|
||||
myBestSeedsVFile.write(line)
|
||||
s.release()
|
||||
|
||||
|
||||
if randReset: # new direction because current one led to worse fit
|
||||
|
||||
randReset = False
|
||||
|
@ -67,46 +73,38 @@ class myThread (threading.Thread):
|
|||
for i in range(NmoveGrains):
|
||||
selectedMs.append(random.randrange(1,nMicrostructures))
|
||||
|
||||
direction.append(np.array(((random.random()-0.5)*delta[0],
|
||||
(random.random()-0.5)*delta[1],
|
||||
(random.random()-0.5)*delta[2])))
|
||||
|
||||
direction.append((np.random.random()-0.5)*delta)
|
||||
|
||||
perturbedSeedsVFile.close() # reset virtual file
|
||||
perturbedSeedsVFile = StringIO()
|
||||
myBestSeedsVFile.reset()
|
||||
myBestSeedsVFile.seek(0)
|
||||
|
||||
perturbedSeedsTable = damask.ASCIItable(myBestSeedsVFile,perturbedSeedsVFile,labeled=True) # write best fit to perturbed seed file
|
||||
perturbedSeedsTable.head_read()
|
||||
perturbedSeedsTable.head_write()
|
||||
outputAlive=True
|
||||
ms = 1
|
||||
perturbedSeedsTable = damask.Table.from_ASCII(myBestSeedsVFile)
|
||||
coords = perturbedSeedsTable.get('pos')
|
||||
i = 0
|
||||
while outputAlive and perturbedSeedsTable.data_read(): # perturbe selected microstructure
|
||||
for ms,coord in enumerate(coords):
|
||||
if ms in selectedMs:
|
||||
newCoords=np.array(tuple(map(float,perturbedSeedsTable.data[0:3]))+direction[i])
|
||||
newCoords=coord+direction[i]
|
||||
newCoords=np.where(newCoords>=1.0,newCoords-1.0,newCoords) # ensure that the seeds remain in the box
|
||||
newCoords=np.where(newCoords <0.0,newCoords+1.0,newCoords)
|
||||
perturbedSeedsTable.data[0:3]=[format(f, '8.6f') for f in newCoords]
|
||||
coords[i]=newCoords
|
||||
direction[i]*=2.
|
||||
i+= 1
|
||||
ms+=1
|
||||
perturbedSeedsTable.data_write()
|
||||
#--- do tesselation with perturbed seed file ----------------------------------------------------------
|
||||
perturbedSeedsTable.set('pos',coords)
|
||||
perturbedSeedsTable.to_ASCII(perturbedSeedsVFile)
|
||||
|
||||
#--- do tesselation with perturbed seed file ------------------------------------------------------
|
||||
perturbedGeomVFile.close()
|
||||
perturbedGeomVFile = StringIO()
|
||||
perturbedSeedsVFile.reset()
|
||||
perturbedSeedsVFile.seek(0)
|
||||
perturbedGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
|
||||
' -g '+' '.join(list(map(str, options.grid))),streamIn=perturbedSeedsVFile)[0])
|
||||
perturbedGeomVFile.reset()
|
||||
perturbedGeomVFile.seek(0)
|
||||
|
||||
#--- evaluate current seeds file ----------------------------------------------------------------------
|
||||
perturbedGeomTable = damask.ASCIItable(perturbedGeomVFile,None,labeled=False,readonly=True)
|
||||
perturbedGeomTable.head_read()
|
||||
for i in perturbedGeomTable.info:
|
||||
if i.startswith('microstructures'): myNmicrostructures = int(i.split('\t')[1])
|
||||
perturbedGeomTable.data_readArray()
|
||||
perturbedGeomTable.output_flush()
|
||||
currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points
|
||||
#--- evaluate current seeds file ------------------------------------------------------------------
|
||||
perturbedGeom = damask.Geom.from_file(perturbedGeomVFile)
|
||||
myNmicrostructures = len(np.unique(perturbedGeom.microstructure))
|
||||
currentData=np.bincount(perturbedGeom.microstructure.ravel())[1:]/points
|
||||
currentError=[]
|
||||
currentHist=[]
|
||||
for i in range(nMicrostructures): # calculate the deviation in all bins per histogram
|
||||
|
@ -114,8 +112,8 @@ class myThread (threading.Thread):
|
|||
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
|
||||
|
||||
# as long as not all grains are within the range of the target, use the deviation to left and right as error
|
||||
if currentError[0]>0.0:
|
||||
currentError[0] *=((target[0]['bins'][0]-np.min(currentData))**2.0+
|
||||
if currentError[0]>0.0:
|
||||
currentError[0] *=((target[0]['bins'][0]-np.min(currentData))**2.0+
|
||||
(target[0]['bins'][1]-np.max(currentData))**2.0)**0.5 # norm of deviations by number of usual bin deviation
|
||||
s.acquire() # do the evaluation serially
|
||||
bestMatch = match
|
||||
|
@ -137,7 +135,7 @@ class myThread (threading.Thread):
|
|||
damask.util.croak(' target: '+np.array_str(target[i]['histogram']))
|
||||
damask.util.croak(' best: '+np.array_str(currentHist[i]))
|
||||
currentSeedsName = baseFile+'_'+str(bestSeedsUpdate).replace('.','-') # name of new seed file (use time as unique identifier)
|
||||
perturbedSeedsVFile.reset()
|
||||
perturbedSeedsVFile.seek(0)
|
||||
bestSeedsVFile.close()
|
||||
bestSeedsVFile = StringIO()
|
||||
sys.stdout.flush()
|
||||
|
@ -154,7 +152,7 @@ class myThread (threading.Thread):
|
|||
break
|
||||
if i == min(nMicrostructures,myMatch+options.bins)-1: # same quality as before: take it to keep on moving
|
||||
bestSeedsUpdate = time.time()
|
||||
perturbedSeedsVFile.reset()
|
||||
perturbedSeedsVFile.seek(0)
|
||||
bestSeedsVFile.close()
|
||||
bestSeedsVFile = StringIO()
|
||||
for line in perturbedSeedsVFile:
|
||||
|
@ -167,7 +165,7 @@ class myThread (threading.Thread):
|
|||
.format(self.threadID,myNmicrostructures))
|
||||
randReset = True
|
||||
|
||||
|
||||
|
||||
s.release()
|
||||
|
||||
|
||||
|
@ -192,7 +190,7 @@ parser.add_option('--target', dest='target', metavar='string',
|
|||
help='name of the geom file with target distribution [%default]')
|
||||
parser.add_option('--tolerance', dest='threshold', type='int', metavar='int',
|
||||
help='stopping criterion (bin number) [%default]')
|
||||
parser.add_option('--scale', dest='scale',type='float', metavar='float',
|
||||
parser.add_option('--scale', dest='scale',type='float', metavar='float',
|
||||
help='maximum moving distance of perturbed seed in pixel [%default]')
|
||||
parser.add_option('--bins', dest='bins', type='int', metavar='int',
|
||||
help='bins to sort beyond current best fit [%default]')
|
||||
|
@ -216,7 +214,7 @@ damask.util.report(scriptName,options.seedFile)
|
|||
if options.randomSeed is None:
|
||||
options.randomSeed = int(os.urandom(4).hex(),16)
|
||||
damask.util.croak(options.randomSeed)
|
||||
delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2])
|
||||
delta = options.scale/np.array(options.grid)
|
||||
baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
|
||||
points = np.array(options.grid).prod().astype('float')
|
||||
|
||||
|
@ -257,7 +255,7 @@ for i in range(nMicrostructures):
|
|||
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
|
||||
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
|
||||
|
||||
# as long as not all grain sizes are within the range, the error is the deviation to left and right
|
||||
# as long as not all grain sizes are within the range, the error is the deviation to left and right
|
||||
if target[0]['error'] > 0.0:
|
||||
target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+
|
||||
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
|
||||
|
@ -267,7 +265,7 @@ for i in range(nMicrostructures):
|
|||
match = i+1
|
||||
|
||||
|
||||
if options.maxseeds < 1:
|
||||
if options.maxseeds < 1:
|
||||
maxSeeds = len(np.unique(initialGeom.microstructure))
|
||||
else:
|
||||
maxSeeds = options.maxseeds
|
||||
|
|
Loading…
Reference in New Issue