added all 13 slip families for bct(beta)-Sn

increased the allowable columns for lattice.f90 to allow for the large interaction matrix.
This commit is contained in:
Aritra Chakraborty 2015-09-22 18:42:23 +00:00
parent 3a1758b978
commit b528088653
2 changed files with 91 additions and 127 deletions

View File

@ -582,7 +582,7 @@ plastic_none.o: plastic_none.f90 \
ifeq "$(F90)" "gfortran" ifeq "$(F90)" "gfortran"
lattice.o: lattice.f90 \ lattice.o: lattice.f90 \
material.o material.o
$(PREFIX) $(COMPILERNAME) $(COMPILE) -ffree-line-length-150 -c lattice.f90 $(SUFFIX) $(PREFIX) $(COMPILERNAME) $(COMPILE) -ffree-line-length-240 -c lattice.f90 $(SUFFIX)
# long lines for interaction matrix # long lines for interaction matrix
else else
lattice.o: lattice.f90 \ lattice.o: lattice.f90 \

View File

@ -16,13 +16,13 @@ module lattice
implicit none implicit none
private private
integer(pInt), parameter, public :: & integer(pInt), parameter, public :: &
LATTICE_maxNslipFamily = 10_pInt, & !< max # of slip system families over lattice structures LATTICE_maxNslipFamily = 13_pInt, & !< max # of slip system families over lattice structures
LATTICE_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures LATTICE_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures
LATTICE_maxNtransFamily = 2_pInt, & !< max # of transformation system families over lattice structures LATTICE_maxNtransFamily = 2_pInt, & !< max # of transformation system families over lattice structures
LATTICE_maxNcleavageFamily = 3_pInt, & !< max # of transformation system families over lattice structures LATTICE_maxNcleavageFamily = 3_pInt, & !< max # of transformation system families over lattice structures
LATTICE_maxNslip = 33_pInt, & !< max # of slip systems over lattice structures LATTICE_maxNslip = 52_pInt, & !< max # of slip systems over lattice structures
LATTICE_maxNtwin = 24_pInt, & !< max # of twin systems over lattice structures LATTICE_maxNtwin = 24_pInt, & !< max # of twin systems over lattice structures
LATTICE_maxNinteraction = 110_pInt, & !< max # of interaction types (in hardening matrix part) LATTICE_maxNinteraction = 182_pInt, & !< max # of interaction types (in hardening matrix part)
LATTICE_maxNnonSchmid = 6_pInt, & !< max # of non schmid contributions over lattice structures LATTICE_maxNnonSchmid = 6_pInt, & !< max # of non schmid contributions over lattice structures
LATTICE_maxNtrans = 12_pInt, & !< max # of transformations over lattice structures LATTICE_maxNtrans = 12_pInt, & !< max # of transformations over lattice structures
LATTICE_maxNcleavage = 9_pInt !< max # of cleavage over lattice structures LATTICE_maxNcleavage = 9_pInt !< max # of cleavage over lattice structures
@ -80,7 +80,7 @@ module lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! fcc ! fcc
integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: &
LATTICE_fcc_NslipSystem = int([12, 0, 0, 0, 0, 0, 0, 0, 0, 0],pInt) !< total # of slip systems per family for fcc LATTICE_fcc_NslipSystem = int([12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],pInt) !< total # of slip systems per family for fcc
integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: &
LATTICE_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< total # of twin systems per family for fcc LATTICE_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< total # of twin systems per family for fcc
@ -325,7 +325,7 @@ module lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! bcc ! bcc
integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: &
LATTICE_bcc_NslipSystem = int([ 12, 12, 0, 0, 0, 0, 0, 0, 0, 0], pInt) !< total # of slip systems per family for bcc LATTICE_bcc_NslipSystem = int([ 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], pInt) !< total # of slip systems per family for bcc
integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: &
LATTICE_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< total # of twin systems per family for bcc LATTICE_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< total # of twin systems per family for bcc
@ -523,7 +523,7 @@ module lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! hex ! hex
integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: &
lattice_hex_NslipSystem = int([ 3, 3, 3, 6, 12, 6, 0, 0, 0, 0],pInt) !< # of slip systems per family for hex lattice_hex_NslipSystem = int([ 3, 3, 3, 6, 12, 6, 0, 0, 0, 0, 0, 0, 0],pInt) !< # of slip systems per family for hex
integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: &
lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex
@ -806,7 +806,7 @@ module lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! bct ! bct
integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: &
LATTICE_bct_NslipSystem = int([2, 2, 2, 4, 2, 4, 2, 2, 4, 8 ],pInt) !< # of slip systems per family for bct (Sn) Bieler J. Electr Mater 2009 LATTICE_bct_NslipSystem = int([2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 4, 8, 8 ],pInt) !< # of slip systems per family for bct (Sn) Bieler J. Electr Mater 2009
integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: &
LATTICE_bct_NtwinSystem = int([0, 0, 0, 0], pInt) !< total # of twin systems per family for bct-example LATTICE_bct_NtwinSystem = int([0, 0, 0, 0], pInt) !< total # of twin systems per family for bct-example
@ -819,7 +819,7 @@ module lattice
integer(pInt), parameter , private :: & integer(pInt), parameter , private :: &
LATTICE_bct_Nslip = 32_pInt, & ! sum(lattice_bct_NslipSystem), !< total # of slip systems for bct LATTICE_bct_Nslip = 52_pInt, & ! sum(lattice_bct_NslipSystem), !< total # of slip systems for bct
LATTICE_bct_Ntwin = 0_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc LATTICE_bct_Ntwin = 0_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
LATTICE_bct_NnonSchmid = 0_pInt, & !< # of non-Schmid contributions for bcc LATTICE_bct_NnonSchmid = 0_pInt, & !< # of non-Schmid contributions for bcc
LATTICE_bct_Ntrans = 0_pInt, & !< total # of transformations for bcc LATTICE_bct_Ntrans = 0_pInt, & !< total # of transformations for bcc
@ -837,7 +837,7 @@ module lattice
! slip family 3 {100)<010] ! slip family 3 {100)<010]
0, 1, 0, 1, 0, 0, & 0, 1, 0, 1, 0, 0, &
1, 0, 0, 0, 1, 0, & 1, 0, 0, 0, 1, 0, &
! Slip family 4 {110)<1-11] ! Slip family 4 {110)<1-11]/2
1,-1, 1, 1, 1, 0, & 1,-1, 1, 1, 1, 0, &
1,-1,-1, 1, 1, 0, & 1,-1,-1, 1, 1, 0, &
-1,-1,-1, -1, 1, 0, & -1,-1,-1, -1, 1, 0, &
@ -861,7 +861,21 @@ module lattice
0,-1,-1, 0,-1, 1, & 0,-1,-1, 0,-1, 1, &
-1, 0,-1, -1, 0, 1, & -1, 0,-1, -1, 0, 1, &
1, 0,-1, 1, 0, 1, & 1, 0,-1, 1, 0, 1, &
! Slip family 10 {211)<01-1] ! Slip family 10 {011)<1-11]/2
1,-1, 1, 0, 1, 1, &
1, 1,-1, 0, 1, 1, &
1, 1, 1, 0, 1,-1, &
-1, 1, 1, 0, 1,-1, &
1,-1,-1, 1, 0, 1, &
-1,-1, 1, 1, 0, 1, &
1, 1, 1, 1, 0,-1, &
1,-1, 1, 1, 0,-1, &
! Slip family 11 {011)<100]
1, 0, 0, 0, 1, 1, &
1, 0, 0, 0, 1,-1, &
0, 1, 0, 1, 0, 1, &
0, 1, 0, 1, 0,-1, &
! Slip family 12 {211)<01-1]
0, 1,-1, 2, 1, 1, & 0, 1,-1, 2, 1, 1, &
0,-1,-1, 2,-1, 1, & 0,-1,-1, 2,-1, 1, &
1, 0,-1, 1, 2, 1, & 1, 0,-1, 1, 2, 1, &
@ -869,115 +883,86 @@ module lattice
0, 1,-1, -2, 1, 1, & 0, 1,-1, -2, 1, 1, &
0,-1,-1, -2,-1, 1, & 0,-1,-1, -2,-1, 1, &
-1, 0,-1, -1,-2, 1, & -1, 0,-1, -1,-2, 1, &
1, 0,-1, 1,-2, 1 & 1, 0,-1, 1,-2, 1, &
! Slip family 13 {211)<-111]/2
-1, 1, 1, 2, 1, 1, &
-1,-1, 1, 2,-1, 1, &
1,-1, 1, 1, 2, 1, &
-1,-1, 1, -1, 2, 1, &
1, 1, 1, -2, 1, 1, &
1,-1, 1, -2,-1, 1, &
-1, 1, 1, -1,-2, 1, &
1, 1, 1, 1,-2, 1 &
],pReal),[ 3_pInt + 3_pInt,LATTICE_bct_Nslip]) !< slip systems for bct sorted by Bieler ],pReal),[ 3_pInt + 3_pInt,LATTICE_bct_Nslip]) !< slip systems for bct sorted by Bieler
integer(pInt), dimension(LATTICE_bct_Nslip,LATTICE_bct_Nslip), parameter, public :: & integer(pInt), dimension(LATTICE_bct_Nslip,LATTICE_bct_Nslip), parameter, public :: &
LATTICE_bct_interactionSlipSlip = reshape(int( [& LATTICE_bct_interactionSlipSlip = reshape(int( [&
1, 2, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, & 1, 2, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, &
2, 1, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, & 2, 1, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, &
! !
6, 6, 4, 5, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, & 6, 6, 4, 5, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, &
6, 6, 5, 4, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, & 6, 6, 5, 4, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, &
! !
12, 12, 11, 11, 9, 10, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, & 12, 12, 11, 11, 9, 10, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
12, 12, 11, 11, 10, 9, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, & 12, 12, 11, 11, 10, 9, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
! !
20, 20, 19, 19, 18, 18, 16, 17, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, & 20, 20, 19, 19, 18, 18, 16, 17, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 16, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, & 20, 20, 19, 19, 18, 18, 17, 16, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 17, 16, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, & 20, 20, 19, 19, 18, 18, 17, 17, 16, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 17, 17, 16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, & 20, 20, 19, 19, 18, 18, 17, 17, 17, 16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
! !
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, & 30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, & 30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
! !
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, & 42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, & 42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, & 42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, & 42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
! !
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, & 56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, & 56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
! !
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, & 72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, & 72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
! !
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, & 90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, & 90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82, 99, 99, 99, 99, 99, 99, 99, 99, & 90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 99, 99, 99, 99, 99, 99, 99, 99, & 90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
! !
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 100,101,101,101,101,101,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 100,101,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,100,101,101,101,101,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,100,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,100,101,101,101,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,100,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,100,101,101,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,100,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,100,101,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,100,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,100,101,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,100,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,100,101, & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,100,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,101,100 & 110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,101,100, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
],pInt),[lattice_bct_Nslip,lattice_bct_Nslip],order=[2,1]) !
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 121, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 121, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 121, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
!
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 144,145,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,144,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,144,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,144,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,144,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,144,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,144,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,145,144, 168,168,168,168,168,168,168,168, &
!
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,169,170,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,169,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,169,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,170,169,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,169,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,169,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,169 &
! integer(pInt), dimension(LATTICE_bct_Nslip,LATTICE_bct_Ntwin), parameter, public :: & ],pInt),[lattice_bct_Nslip,lattice_bct_Nslip],order=[2,1])
! LATTICE_bct_interactionSlipTwin = reshape(int( [&
! 1, 1, 2, 2, & ! ---> twin
! 1, 1, 2, 2, & ! |
! ! v slip
! 3, 3, 4, 4, &
! 3, 3, 4, 4, &
!!
! 5, 5, 6, 6, &
! 5, 5, 6, 6, &
!!
! 7, 7, 8, 8, &
! 7, 7, 8, 8, &
! 7, 7, 8, 8, &
! 7, 7, 8, 8, &
!!
! 9, 9, 10, 10, &
! 9, 9, 10, 10, &
! !
! 11, 11, 12, 12, &
! 11, 11, 12, 12, &
! 11, 11, 12, 12, &
! 11, 11, 12, 12, &
!!
! 13, 13, 14, 14, &
! 13, 13, 14, 14, &
! !
! 15, 15, 16, 16, &
! 15, 15, 16, 16, &
!!
! 17, 17, 18, 18, &
! 17, 17, 18, 18, &
! 17, 17, 18, 18, &
! 17, 17, 18, 18, &
!!
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20, &
! 19, 19, 20, 20, 20 &
! ],pInt),[LATTICE_bct_Nslip,LATTICE_bct_Ntwin],order=[2,1]) !< Slip--twin interaction types for bcc
!
! integer(pInt), dimension(LATTICE_bct_Ntwin,LATTICE_bct_Nslip), parameter, public :: &
! LATTICE_bct_interactionTwinSlip = 1_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
!
! integer(pInt), dimension(LATTICE_bct_Ntwin,LATTICE_bct_Ntwin), parameter, public :: &
! LATTICE_bct_interactionTwinTwin = reshape(int( [&
! 1, 2, &
! 2, 1 &
! ],pInt),[LATTICE_bct_Ntwin,LATTICE_bct_Ntwin],order=[2,1]) !< Twin--twin interaction types for bcc
!
! real(pReal), dimension(3+3,LATTICE_bct_Ncleavage), parameter, private :: &
! LATTICE_bct_systemCleavage = reshape(real([&
! ! Cleavage direction Plane normal
! 1, 1, 1, -1, 0, 1, &
! -1, 1, 1, 1, 1, 0, &
! 1, 1, 1, -1, 1, 0 &
! ],pReal),[ 3_pInt + 3_pInt,LATTICE_bct_Ncleavage])
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! isotropic ! isotropic
@ -1173,7 +1158,6 @@ real(pReal), dimension(4,36), parameter, private :: &
LATTICE_bcc_ID, & LATTICE_bcc_ID, &
LATTICE_bct_ID, & LATTICE_bct_ID, &
LATTICE_hex_ID LATTICE_hex_ID
! LATTICE_spacegroup__ID
contains contains
@ -1889,33 +1873,13 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
sn(3,i) = lattice_bct_systemSlip(6,i)/CoverA sn(3,i) = lattice_bct_systemSlip(6,i)/CoverA
sdU = sd(1:3,i) / math_norm3(sd(1:3,i)) sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
snU = sn(1:3,i) / math_norm3(sn(1:3,i)) snU = sn(1:3,i) / math_norm3(sn(1:3,i))
!used bcc type
! np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
! nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
enddo enddo
! do i = 1_pInt,myNtwin ! assign twin system vectors and shears
! td(1:2,i) = lattice_bct_systemTwin(1:2,i)
! td(3,i) = lattice_bct_systemTwin(3,i)*CoverA
! tn(1:2,i) = lattice_bct_systemTwin(4:5,i)
! tn(3,i) = lattice_bct_systemTwin(6,i)/CoverA
! ts(i) = lattice_bct_shearTwin(i)
! enddo
! do i = 1_pInt, myNcleavage ! assign cleavage system vectors
! cd(1:3,i) = lattice_bct_systemCleavage(1:3,i)/math_norm3(lattice_bct_systemCleavage(1:3,i))
! cn(1:3,i) = lattice_bct_systemCleavage(4:6,i)/math_norm3(lattice_bct_systemCleavage(4:6,i))
! ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
! enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bct_NslipSystem lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bct_NslipSystem
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bct_NtwinSystem lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bct_NtwinSystem
lattice_NtransSystem(1:lattice_maxNtransFamily,myPhase) = lattice_bct_NtransSystem lattice_NtransSystem(1:lattice_maxNtransFamily,myPhase) = lattice_bct_NtransSystem
lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_bct_NcleavageSystem lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_bct_NcleavageSystem
lattice_NnonSchmid(myPhase) = lattice_bct_NnonSchmid lattice_NnonSchmid(myPhase) = lattice_bct_NnonSchmid
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myPhase) = lattice_bct_interactionSlipSlip lattice_interactionSlipSlip(1:myNslip,1:myNslip,myPhase) = lattice_bct_interactionSlipSlip
! lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myPhase) = lattice_bct_interactionSlipTwin
! lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myPhase) = lattice_bct_interactionTwinSlip
! lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myPhase) = lattice_bct_interactionTwinTwin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! orthorhombic (no crystal plasticity) ! orthorhombic (no crystal plasticity)