whitespace cleaning and other polishing
This commit is contained in:
parent
38b755740b
commit
b4679fabfc
|
@ -1,6 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
class Color():
|
||||
class Color:
|
||||
"""Color representation in and conversion between different color-spaces."""
|
||||
|
||||
__slots__ = [
|
||||
|
@ -13,544 +13,538 @@ class Color():
|
|||
def __init__(self,
|
||||
model = 'RGB',
|
||||
color = np.zeros(3,'d')):
|
||||
"""
|
||||
Create a Color object.
|
||||
"""
|
||||
Create a Color object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : string
|
||||
color model
|
||||
color : numpy.ndarray
|
||||
vector representing the color according to the selected model
|
||||
Parameters
|
||||
----------
|
||||
model : string
|
||||
color model
|
||||
color : numpy.ndarray
|
||||
vector representing the color according to the selected model
|
||||
|
||||
"""
|
||||
self.__transforms__ = \
|
||||
{'HSV': {'index': 0, 'next': self._HSV2HSL},
|
||||
'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV},
|
||||
'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
|
||||
'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
|
||||
'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
|
||||
'MSH': {'index': 5, 'prev': self._MSH2CIELAB},
|
||||
}
|
||||
"""
|
||||
self.__transforms__ = \
|
||||
{'HSV': {'index': 0, 'next': self._HSV2HSL},
|
||||
'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV},
|
||||
'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
|
||||
'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
|
||||
'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
|
||||
'MSH': {'index': 5, 'prev': self._MSH2CIELAB},
|
||||
}
|
||||
|
||||
model = model.upper()
|
||||
if model not in list(self.__transforms__.keys()): model = 'RGB'
|
||||
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
|
||||
for i in range(3):
|
||||
color[i] /= 255.0 # rescale to RGB
|
||||
model = model.upper()
|
||||
if model not in list(self.__transforms__.keys()): model = 'RGB'
|
||||
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
|
||||
for i in range(3):
|
||||
color[i] /= 255.0 # rescale to RGB
|
||||
|
||||
if model == 'HSL': # are we HSL ?
|
||||
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
|
||||
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
|
||||
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
|
||||
if model == 'HSL': # are we HSL ?
|
||||
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
|
||||
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
|
||||
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
|
||||
|
||||
self.model = model
|
||||
self.color = np.array(color,'d')
|
||||
self.model = model
|
||||
self.color = np.array(color,'d')
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Color model and values."""
|
||||
return 'Model: %s Color: %s'%(self.model,str(self.color))
|
||||
"""Color model and values."""
|
||||
return 'Model: %s Color: %s'%(self.model,str(self.color))
|
||||
|
||||
|
||||
def __str__(self):
|
||||
"""Color model and values."""
|
||||
return self.__repr__()
|
||||
"""Color model and values."""
|
||||
return self.__repr__()
|
||||
|
||||
|
||||
def convert_to(self,toModel = 'RGB'):
|
||||
"""
|
||||
Change the color model permanently.
|
||||
"""
|
||||
Change the color model permanently.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
toModel : string
|
||||
color model
|
||||
Parameters
|
||||
----------
|
||||
toModel : string
|
||||
color model
|
||||
|
||||
"""
|
||||
toModel = toModel.upper()
|
||||
if toModel not in list(self.__transforms__.keys()): return
|
||||
"""
|
||||
toModel = toModel.upper()
|
||||
if toModel not in list(self.__transforms__.keys()): return
|
||||
|
||||
sourcePos = self.__transforms__[self.model]['index']
|
||||
targetPos = self.__transforms__[toModel]['index']
|
||||
sourcePos = self.__transforms__[self.model]['index']
|
||||
targetPos = self.__transforms__[toModel]['index']
|
||||
|
||||
while sourcePos < targetPos:
|
||||
self.__transforms__[self.model]['next']()
|
||||
sourcePos += 1
|
||||
while sourcePos < targetPos:
|
||||
self.__transforms__[self.model]['next']()
|
||||
sourcePos += 1
|
||||
|
||||
while sourcePos > targetPos:
|
||||
self.__transforms__[self.model]['prev']()
|
||||
sourcePos -= 1
|
||||
return self
|
||||
while sourcePos > targetPos:
|
||||
self.__transforms__[self.model]['prev']()
|
||||
sourcePos -= 1
|
||||
return self
|
||||
|
||||
|
||||
def express_as(self,asModel = 'RGB'):
|
||||
"""
|
||||
Return the color in a different model.
|
||||
"""
|
||||
Return the color in a different model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
asModel : string
|
||||
color model
|
||||
|
||||
"""
|
||||
return self.__class__(self.model,self.color).convert_to(asModel)
|
||||
Parameters
|
||||
----------
|
||||
asModel : string
|
||||
color model
|
||||
|
||||
"""
|
||||
return self.__class__(self.model,self.color).convert_to(asModel)
|
||||
|
||||
|
||||
def _HSV2HSL(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance).
|
||||
"""
|
||||
Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance).
|
||||
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSV': return
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSV': return
|
||||
|
||||
converted = Color('HSL',np.array([
|
||||
self.color[0],
|
||||
1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \
|
||||
else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)),
|
||||
0.5*self.color[2]*(2.-self.color[1]),
|
||||
]))
|
||||
converted = Color('HSL',np.array([
|
||||
self.color[0],
|
||||
1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \
|
||||
else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)),
|
||||
0.5*self.color[2]*(2.-self.color[1]),
|
||||
]))
|
||||
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _HSL2HSV(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness).
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness).
|
||||
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
|
||||
h = self.color[0]
|
||||
b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1)))
|
||||
s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b
|
||||
h = self.color[0]
|
||||
b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1)))
|
||||
s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b
|
||||
|
||||
converted = Color('HSV',np.array([h,s,b]))
|
||||
converted = Color('HSV',np.array([h,s,b]))
|
||||
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _HSL2RGB(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue).
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
|
||||
sextant = self.color[0]*6.0
|
||||
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
|
||||
x = c*(1.0 - abs(sextant%2 - 1.0))
|
||||
m = self.color[2] - 0.5*c
|
||||
sextant = self.color[0]*6.0
|
||||
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
|
||||
x = c*(1.0 - abs(sextant%2 - 1.0))
|
||||
m = self.color[2] - 0.5*c
|
||||
|
||||
converted = Color('RGB',np.array([
|
||||
[c+m, x+m, m],
|
||||
[x+m, c+m, m],
|
||||
[m, c+m, x+m],
|
||||
[m, x+m, c+m],
|
||||
[x+m, m, c+m],
|
||||
[c+m, m, x+m],
|
||||
][int(sextant)],'d'))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('RGB',np.array([
|
||||
[c+m, x+m, m],
|
||||
[x+m, c+m, m],
|
||||
[m, c+m, x+m],
|
||||
[m, x+m, c+m],
|
||||
[x+m, m, c+m],
|
||||
[c+m, m, x+m],
|
||||
][int(sextant)],'d'))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _RGB2HSL(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance).
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
All values are in the range [0,1]
|
||||
from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
|
||||
HSL = np.zeros(3,'d')
|
||||
maxcolor = self.color.max()
|
||||
mincolor = self.color.min()
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
HSL = np.zeros(3,'d')
|
||||
maxcolor = self.color.max()
|
||||
mincolor = self.color.min()
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor)
|
||||
if (maxcolor == self.color[0]):
|
||||
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[1]):
|
||||
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[2]):
|
||||
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
|
||||
converted = Color('HSL', HSL)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor)
|
||||
if (maxcolor == self.color[0]):
|
||||
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[1]):
|
||||
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[2]):
|
||||
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
|
||||
converted = Color('HSL', HSL)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _RGB2XYZ(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to CIE XYZ.
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to CIE XYZ.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
|
||||
XYZ = np.zeros(3,'d')
|
||||
RGB_lin = np.zeros(3,'d')
|
||||
convert = np.array([[0.412453,0.357580,0.180423],
|
||||
[0.212671,0.715160,0.072169],
|
||||
[0.019334,0.119193,0.950227]])
|
||||
XYZ = np.zeros(3,'d')
|
||||
RGB_lin = np.zeros(3,'d')
|
||||
convert = np.array([[0.412453,0.357580,0.180423],
|
||||
[0.212671,0.715160,0.072169],
|
||||
[0.019334,0.119193,0.950227]])
|
||||
|
||||
for i in range(3):
|
||||
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
|
||||
else: RGB_lin[i] = self.color[i] /12.92
|
||||
XYZ = np.dot(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
|
||||
converted = Color('XYZ', XYZ)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
for i in range(3):
|
||||
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
|
||||
else: RGB_lin[i] = self.color[i] /12.92
|
||||
XYZ = np.dot(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
|
||||
converted = Color('XYZ', XYZ)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _XYZ2RGB(self):
|
||||
"""
|
||||
Convert CIE XYZ to R(ed) G(reen) B(lue).
|
||||
"""
|
||||
Convert CIE XYZ to R(ed) G(reen) B(lue).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ':
|
||||
return
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ': return
|
||||
|
||||
convert = np.array([[ 3.240479,-1.537150,-0.498535],
|
||||
[-0.969256, 1.875992, 0.041556],
|
||||
[ 0.055648,-0.204043, 1.057311]])
|
||||
RGB_lin = np.dot(convert,self.color)
|
||||
RGB = np.zeros(3,'d')
|
||||
convert = np.array([[ 3.240479,-1.537150,-0.498535],
|
||||
[-0.969256, 1.875992, 0.041556],
|
||||
[ 0.055648,-0.204043, 1.057311]])
|
||||
RGB_lin = np.dot(convert,self.color)
|
||||
RGB = np.zeros(3,'d')
|
||||
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else: RGB[i] = RGB_lin[i] *12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else: RGB[i] = RGB_lin[i] *12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
|
||||
maxVal = max(RGB) # clipping colors according to the display gamut
|
||||
if (maxVal > 1.0): RGB /= maxVal
|
||||
|
||||
converted = Color('RGB', RGB)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
maxVal = max(RGB) # clipping colors according to the display gamut
|
||||
if (maxVal > 1.0): RGB /= maxVal
|
||||
|
||||
converted = Color('RGB', RGB)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _CIELAB2XYZ(self):
|
||||
"""
|
||||
Convert CIE Lab to CIE XYZ.
|
||||
"""
|
||||
Convert CIE Lab to CIE XYZ.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
All values are in the range [0,1]
|
||||
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = np.zeros(3,'d')
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = np.zeros(3,'d')
|
||||
|
||||
XYZ[1] = (self.color[0] + 16.0 ) / 116.0
|
||||
XYZ[0] = XYZ[1] + self.color[1]/ 500.0
|
||||
XYZ[2] = XYZ[1] - self.color[2]/ 200.0
|
||||
XYZ[1] = (self.color[0] + 16.0 ) / 116.0
|
||||
XYZ[0] = XYZ[1] + self.color[1]/ 500.0
|
||||
XYZ[2] = XYZ[1] - self.color[2]/ 200.0
|
||||
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3.
|
||||
else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.)
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3.
|
||||
else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.)
|
||||
|
||||
converted = Color('XYZ', XYZ*ref_white)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('XYZ', XYZ*ref_white)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _XYZ2CIELAB(self):
|
||||
"""
|
||||
Convert CIE XYZ to CIE Lab.
|
||||
"""
|
||||
Convert CIE XYZ to CIE Lab.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/Lab_color_space,
|
||||
http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ': return
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/Lab_color_space,
|
||||
http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ': return
|
||||
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = self.color/ref_white
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = self.color/ref_white
|
||||
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
|
||||
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
|
||||
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
|
||||
|
||||
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
|
||||
500.0 * (XYZ[0] - XYZ[1]),
|
||||
200.0 * (XYZ[1] - XYZ[2]) ]))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
|
||||
500.0 * (XYZ[0] - XYZ[1]),
|
||||
200.0 * (XYZ[1] - XYZ[2]) ]))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _CIELAB2MSH(self):
|
||||
"""
|
||||
Convert CIE Lab to Msh colorspace.
|
||||
"""
|
||||
Convert CIE Lab to Msh colorspace.
|
||||
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
|
||||
Msh = np.zeros(3,'d')
|
||||
Msh[0] = np.sqrt(np.dot(self.color,self.color))
|
||||
if (Msh[0] > 0.001):
|
||||
Msh[1] = np.arccos(self.color[0]/Msh[0])
|
||||
if (self.color[1] != 0.0):
|
||||
Msh[2] = np.arctan2(self.color[2],self.color[1])
|
||||
Msh = np.zeros(3,'d')
|
||||
Msh[0] = np.sqrt(np.dot(self.color,self.color))
|
||||
if (Msh[0] > 0.001):
|
||||
Msh[1] = np.arccos(self.color[0]/Msh[0])
|
||||
if (self.color[1] != 0.0):
|
||||
Msh[2] = np.arctan2(self.color[2],self.color[1])
|
||||
|
||||
converted = Color('MSH', Msh)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('MSH', Msh)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _MSH2CIELAB(self):
|
||||
"""
|
||||
Convert Msh colorspace to CIE Lab.
|
||||
|
||||
with s,h in radians
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'MSH': return
|
||||
|
||||
Lab = np.zeros(3,'d')
|
||||
Lab[0] = self.color[0] * np.cos(self.color[1])
|
||||
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2])
|
||||
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2])
|
||||
|
||||
converted = Color('CIELAB', Lab)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
class Colormap:
|
||||
"""Perceptually uniform diverging or sequential colormap."""
|
||||
|
||||
__slots__ = [
|
||||
'left',
|
||||
'right',
|
||||
'interpolate',
|
||||
]
|
||||
__predefined__ = {
|
||||
'gray': {'left': Color('HSL',[0,1,1]),
|
||||
'right': Color('HSL',[0,0,0.15]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'grey': {'left': Color('HSL',[0,1,1]),
|
||||
'right': Color('HSL',[0,0,0.15]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'red': {'left': Color('HSL',[0,1,0.14]),
|
||||
'right': Color('HSL',[0,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'green': {'left': Color('HSL',[0.33333,1,0.14]),
|
||||
'right': Color('HSL',[0.33333,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'blue': {'left': Color('HSL',[0.66,1,0.14]),
|
||||
'right': Color('HSL',[0.66,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'seaweed': {'left': Color('HSL',[0.78,1.0,0.1]),
|
||||
'right': Color('HSL',[0.40000,0.1,0.9]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'bluebrown': {'left': Color('HSL',[0.65,0.53,0.49]),
|
||||
'right': Color('HSL',[0.11,0.75,0.38]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'redgreen': {'left': Color('HSL',[0.97,0.96,0.36]),
|
||||
'right': Color('HSL',[0.33333,1.0,0.14]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'bluered': {'left': Color('HSL',[0.65,0.53,0.49]),
|
||||
'right': Color('HSL',[0.97,0.96,0.36]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'blueredrainbow':{'left': Color('HSL',[2.0/3.0,1,0.5]),
|
||||
'right': Color('HSL',[0,1,0.5]),
|
||||
'interpolate': 'linear' },
|
||||
'orientation': {'left': Color('RGB',[0.933334,0.878432,0.878431]),
|
||||
'right': Color('RGB',[0.250980,0.007843,0.000000]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'strain': {'left': Color('RGB',[0.941177,0.941177,0.870588]),
|
||||
'right': Color('RGB',[0.266667,0.266667,0.000000]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'stress': {'left': Color('RGB',[0.878432,0.874511,0.949019]),
|
||||
'right': Color('RGB',[0.000002,0.000000,0.286275]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
}
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self,
|
||||
left = Color('RGB',[1,1,1]),
|
||||
right = Color('RGB',[0,0,0]),
|
||||
interpolate = 'perceptualuniform',
|
||||
predefined = None
|
||||
):
|
||||
"""
|
||||
Convert Msh colorspace to CIE Lab.
|
||||
Create a Colormap object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
left : Color
|
||||
left color (minimum value)
|
||||
right : Color
|
||||
right color (maximum value)
|
||||
interpolate : str
|
||||
interpolation scheme (either 'perceptualuniform' or 'linear')
|
||||
predefined : bool
|
||||
ignore other arguments and use predefined definition
|
||||
|
||||
with s,h in radians
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'MSH': return
|
||||
if predefined is not None:
|
||||
left = self.__predefined__[predefined.lower()]['left']
|
||||
right= self.__predefined__[predefined.lower()]['right']
|
||||
interpolate = self.__predefined__[predefined.lower()]['interpolate']
|
||||
|
||||
Lab = np.zeros(3,'d')
|
||||
Lab[0] = self.color[0] * np.cos(self.color[1])
|
||||
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2])
|
||||
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2])
|
||||
if left.__class__.__name__ != 'Color':
|
||||
left = Color()
|
||||
if right.__class__.__name__ != 'Color':
|
||||
right = Color()
|
||||
|
||||
converted = Color('CIELAB', Lab)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
self.left = left
|
||||
self.right = right
|
||||
self.interpolate = interpolate
|
||||
|
||||
|
||||
class Colormap():
|
||||
"""Perceptually uniform diverging or sequential colormap."""
|
||||
|
||||
__slots__ = [
|
||||
'left',
|
||||
'right',
|
||||
'interpolate',
|
||||
]
|
||||
__predefined__ = {
|
||||
'gray': {'left': Color('HSL',[0,1,1]),
|
||||
'right': Color('HSL',[0,0,0.15]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'grey': {'left': Color('HSL',[0,1,1]),
|
||||
'right': Color('HSL',[0,0,0.15]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'red': {'left': Color('HSL',[0,1,0.14]),
|
||||
'right': Color('HSL',[0,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'green': {'left': Color('HSL',[0.33333,1,0.14]),
|
||||
'right': Color('HSL',[0.33333,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'blue': {'left': Color('HSL',[0.66,1,0.14]),
|
||||
'right': Color('HSL',[0.66,0.35,0.91]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'seaweed': {'left': Color('HSL',[0.78,1.0,0.1]),
|
||||
'right': Color('HSL',[0.40000,0.1,0.9]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'bluebrown': {'left': Color('HSL',[0.65,0.53,0.49]),
|
||||
'right': Color('HSL',[0.11,0.75,0.38]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'redgreen': {'left': Color('HSL',[0.97,0.96,0.36]),
|
||||
'right': Color('HSL',[0.33333,1.0,0.14]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'bluered': {'left': Color('HSL',[0.65,0.53,0.49]),
|
||||
'right': Color('HSL',[0.97,0.96,0.36]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'blueredrainbow':{'left': Color('HSL',[2.0/3.0,1,0.5]),
|
||||
'right': Color('HSL',[0,1,0.5]),
|
||||
'interpolate': 'linear' },
|
||||
'orientation': {'left': Color('RGB',[0.933334,0.878432,0.878431]),
|
||||
'right': Color('RGB',[0.250980,0.007843,0.000000]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'strain': {'left': Color('RGB',[0.941177,0.941177,0.870588]),
|
||||
'right': Color('RGB',[0.266667,0.266667,0.000000]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
'stress': {'left': Color('RGB',[0.878432,0.874511,0.949019]),
|
||||
'right': Color('RGB',[0.000002,0.000000,0.286275]),
|
||||
'interpolate': 'perceptualuniform'},
|
||||
}
|
||||
# ------------------------------------------------------------------
|
||||
def __repr__(self):
|
||||
"""Left and right value of colormap."""
|
||||
return 'Left: %s Right: %s'%(self.left,self.right)
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self,
|
||||
left = Color('RGB',[1,1,1]),
|
||||
right = Color('RGB',[0,0,0]),
|
||||
interpolate = 'perceptualuniform',
|
||||
predefined = None
|
||||
):
|
||||
"""
|
||||
Create a Colormap object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
left : Color
|
||||
left color (minimum value)
|
||||
right : Color
|
||||
right color (maximum value)
|
||||
interpolate : str
|
||||
interpolation scheme (either 'perceptualuniform' or 'linear')
|
||||
predefined : bool
|
||||
ignore other arguments and use predefined definition
|
||||
|
||||
"""
|
||||
if predefined is not None:
|
||||
left = self.__predefined__[predefined.lower()]['left']
|
||||
right= self.__predefined__[predefined.lower()]['right']
|
||||
interpolate = self.__predefined__[predefined.lower()]['interpolate']
|
||||
|
||||
if left.__class__.__name__ != 'Color':
|
||||
left = Color()
|
||||
if right.__class__.__name__ != 'Color':
|
||||
right = Color()
|
||||
|
||||
self.left = left
|
||||
self.right = right
|
||||
self.interpolate = interpolate
|
||||
# ------------------------------------------------------------------
|
||||
def invert(self):
|
||||
"""Switch left/minimum with right/maximum."""
|
||||
(self.left, self.right) = (self.right, self.left)
|
||||
return self
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __repr__(self):
|
||||
"""Left and right value of colormap."""
|
||||
return 'Left: %s Right: %s'%(self.left,self.right)
|
||||
# ------------------------------------------------------------------
|
||||
def show_predefined(self):
|
||||
"""Show the labels of the predefined colormaps."""
|
||||
print('\n'.join(self.__predefined__.keys()))
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def color(self,fraction = 0.5):
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def invert(self):
|
||||
"""Switch left/minimum with right/maximum."""
|
||||
(self.left, self.right) = (self.right, self.left)
|
||||
return self
|
||||
def interpolate_Msh(lo, hi, frac):
|
||||
|
||||
def rad_diff(a,b):
|
||||
return abs(a[2]-b[2])
|
||||
# if saturation of one of the two colors is too less than the other, hue of the less
|
||||
def adjust_hue(Msh_sat, Msh_unsat):
|
||||
if Msh_sat[0] >= Msh_unsat[0]:
|
||||
return Msh_sat[2]
|
||||
else:
|
||||
hSpin = Msh_sat[1]/np.sin(Msh_sat[1])*np.sqrt(Msh_unsat[0]**2.0-Msh_sat[0]**2)/Msh_sat[0]
|
||||
if Msh_sat[2] < - np.pi/3.0: hSpin *= -1.0
|
||||
return Msh_sat[2] + hSpin
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def show_predefined(self):
|
||||
"""Show the labels of the predefined colormaps."""
|
||||
print('\n'.join(self.__predefined__.keys()))
|
||||
Msh1 = np.array(lo[:])
|
||||
Msh2 = np.array(hi[:])
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def color(self,fraction = 0.5):
|
||||
if (Msh1[1] > 0.05 and Msh2[1] > 0.05 and rad_diff(Msh1,Msh2) > np.pi/3.0):
|
||||
M_mid = max(Msh1[0],Msh2[0],88.0)
|
||||
if frac < 0.5:
|
||||
Msh2 = np.array([M_mid,0.0,0.0],'d')
|
||||
frac *= 2.0
|
||||
else:
|
||||
Msh1 = np.array([M_mid,0.0,0.0],'d')
|
||||
frac = 2.0*frac - 1.0
|
||||
if Msh1[1] < 0.05 and Msh2[1] > 0.05: Msh1[2] = adjust_hue(Msh2,Msh1)
|
||||
elif Msh1[1] > 0.05 and Msh2[1] < 0.05: Msh2[2] = adjust_hue(Msh1,Msh2)
|
||||
Msh = (1.0 - frac) * Msh1 + frac * Msh2
|
||||
|
||||
def interpolate_Msh(lo, hi, frac):
|
||||
return Color('MSH',Msh)
|
||||
|
||||
def rad_diff(a,b):
|
||||
return abs(a[2]-b[2])
|
||||
# if saturation of one of the two colors is too less than the other, hue of the less
|
||||
def adjust_hue(Msh_sat, Msh_unsat):
|
||||
if Msh_sat[0] >= Msh_unsat[0]:
|
||||
return Msh_sat[2]
|
||||
else:
|
||||
hSpin = Msh_sat[1]/np.sin(Msh_sat[1])*np.sqrt(Msh_unsat[0]**2.0-Msh_sat[0]**2)/Msh_sat[0]
|
||||
if Msh_sat[2] < - np.pi/3.0: hSpin *= -1.0
|
||||
return Msh_sat[2] + hSpin
|
||||
def interpolate_linear(lo, hi, frac):
|
||||
"""Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
|
||||
interpolation = (1.0 - frac) * np.array(lo.color[:]) \
|
||||
+ frac * np.array(hi.express_as(lo.model).color[:])
|
||||
|
||||
Msh1 = np.array(lo[:])
|
||||
Msh2 = np.array(hi[:])
|
||||
return Color(lo.model,interpolation)
|
||||
|
||||
if (Msh1[1] > 0.05 and Msh2[1] > 0.05 and rad_diff(Msh1,Msh2) > np.pi/3.0):
|
||||
M_mid = max(Msh1[0],Msh2[0],88.0)
|
||||
if frac < 0.5:
|
||||
Msh2 = np.array([M_mid,0.0,0.0],'d')
|
||||
frac *= 2.0
|
||||
else:
|
||||
Msh1 = np.array([M_mid,0.0,0.0],'d')
|
||||
frac = 2.0*frac - 1.0
|
||||
if Msh1[1] < 0.05 and Msh2[1] > 0.05: Msh1[2] = adjust_hue(Msh2,Msh1)
|
||||
elif Msh1[1] > 0.05 and Msh2[1] < 0.05: Msh2[2] = adjust_hue(Msh1,Msh2)
|
||||
Msh = (1.0 - frac) * Msh1 + frac * Msh2
|
||||
if self.interpolate == 'perceptualuniform':
|
||||
return interpolate_Msh(self.left.express_as('MSH').color,
|
||||
self.right.express_as('MSH').color,fraction)
|
||||
elif self.interpolate == 'linear':
|
||||
return interpolate_linear(self.left,
|
||||
self.right,fraction)
|
||||
else:
|
||||
raise NameError('unknown color interpolation method')
|
||||
|
||||
return Color('MSH',Msh)
|
||||
# ------------------------------------------------------------------
|
||||
def export(self,name = 'uniformPerceptualColorMap',\
|
||||
format = 'paraview',\
|
||||
steps = 2,\
|
||||
crop = [-1.0,1.0],
|
||||
model = 'RGB'):
|
||||
"""
|
||||
[RGB] colormap for use in paraview or gmsh, or as raw string, or array.
|
||||
|
||||
def interpolate_linear(lo, hi, frac):
|
||||
"""Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
|
||||
interpolation = (1.0 - frac) * np.array(lo.color[:]) \
|
||||
+ frac * np.array(hi.express_as(lo.model).color[:])
|
||||
Arguments: name, format, steps, crop.
|
||||
Format is one of (paraview, gmsh, raw, list).
|
||||
Crop selects a (sub)range in [-1.0,1.0].
|
||||
Generates sequential map if one limiting color is either white or black,
|
||||
diverging map otherwise.
|
||||
"""
|
||||
format = format.lower() # consistent comparison basis
|
||||
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
|
||||
if format == 'paraview':
|
||||
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
|
||||
for i,color in enumerate(colors[:-1])] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(len(colors),colors[-1][0],colors[-1][1],colors[-1][2],)] \
|
||||
+ [' ]\n }\n]']
|
||||
|
||||
return Color(lo.model,interpolation)
|
||||
elif format == 'gmsh':
|
||||
colormap = ['View.ColorTable = {'] \
|
||||
+ [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \
|
||||
+ ['}']
|
||||
|
||||
if self.interpolate == 'perceptualuniform':
|
||||
return interpolate_Msh(self.left.express_as('MSH').color,
|
||||
self.right.express_as('MSH').color,fraction)
|
||||
elif self.interpolate == 'linear':
|
||||
return interpolate_linear(self.left,
|
||||
self.right,fraction)
|
||||
else:
|
||||
raise NameError('unknown color interpolation method')
|
||||
elif format == 'gom':
|
||||
colormap = ['1 1 ' + str(name)
|
||||
+ ' 9 ' + str(name)
|
||||
+ ' 0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 '
|
||||
+ '30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 ' + str(len(colors))
|
||||
+ ' '.join([' 0 %s 255 1'%(' '.join([str(int(x*255.0)) for x in color])) for color in reversed(colors)])]
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def export(self,name = 'uniformPerceptualColorMap',\
|
||||
format = 'paraview',\
|
||||
steps = 2,\
|
||||
crop = [-1.0,1.0],
|
||||
model = 'RGB'):
|
||||
"""
|
||||
[RGB] colormap for use in paraview or gmsh, or as raw string, or array.
|
||||
elif format == 'raw':
|
||||
colormap = ['\t'.join(map(str,color)) for color in colors]
|
||||
|
||||
Arguments: name, format, steps, crop.
|
||||
Format is one of (paraview, gmsh, raw, list).
|
||||
Crop selects a (sub)range in [-1.0,1.0].
|
||||
Generates sequential map if one limiting color is either white or black,
|
||||
diverging map otherwise.
|
||||
"""
|
||||
format = format.lower() # consistent comparison basis
|
||||
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
|
||||
if format == 'paraview':
|
||||
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
|
||||
for i,color in enumerate(colors[:-1])] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(len(colors),colors[-1][0],colors[-1][1],colors[-1][2],)] \
|
||||
+ [' ]\n }\n]']
|
||||
elif format == 'list':
|
||||
colormap = colors
|
||||
|
||||
elif format == 'gmsh':
|
||||
colormap = ['View.ColorTable = {'] \
|
||||
+ [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \
|
||||
+ ['}']
|
||||
else:
|
||||
raise NameError('unknown color export format')
|
||||
|
||||
elif format == 'gom':
|
||||
colormap = ['1 1 ' + str(name)
|
||||
+ ' 9 ' + str(name)
|
||||
+ ' 0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 '
|
||||
+ '30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 ' + str(len(colors))
|
||||
+ ' '.join([' 0 %s 255 1'%(' '.join([str(int(x*255.0)) for x in color])) for color in reversed(colors)])]
|
||||
|
||||
elif format == 'raw':
|
||||
colormap = ['\t'.join(map(str,color)) for color in colors]
|
||||
|
||||
elif format == 'list':
|
||||
colormap = colors
|
||||
|
||||
else:
|
||||
raise NameError('unknown color export format')
|
||||
|
||||
return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap
|
||||
return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap
|
||||
|
|
|
@ -49,6 +49,7 @@ class Geom():
|
|||
'max microstructure: {}'.format(np.nanmax(self.microstructure)),
|
||||
])
|
||||
|
||||
|
||||
def update(self,microstructure=None,size=None,origin=None,rescale=False):
|
||||
"""
|
||||
Updates microstructure and size.
|
||||
|
@ -111,6 +112,7 @@ class Geom():
|
|||
|
||||
return util.return_message(message)
|
||||
|
||||
|
||||
def set_comments(self,comments):
|
||||
"""
|
||||
Replaces all existing comments.
|
||||
|
@ -124,6 +126,7 @@ class Geom():
|
|||
self.comments = []
|
||||
self.add_comments(comments)
|
||||
|
||||
|
||||
def add_comments(self,comments):
|
||||
"""
|
||||
Appends comments to existing comments.
|
||||
|
@ -136,6 +139,7 @@ class Geom():
|
|||
"""
|
||||
self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]
|
||||
|
||||
|
||||
def set_microstructure(self,microstructure):
|
||||
"""
|
||||
Replaces the existing microstructure representation.
|
||||
|
@ -154,6 +158,7 @@ class Geom():
|
|||
else:
|
||||
self.microstructure = np.copy(microstructure)
|
||||
|
||||
|
||||
def set_size(self,size):
|
||||
"""
|
||||
Replaces the existing size information.
|
||||
|
@ -173,6 +178,7 @@ class Geom():
|
|||
else:
|
||||
self.size = np.array(size)
|
||||
|
||||
|
||||
def set_origin(self,origin):
|
||||
"""
|
||||
Replaces the existing origin information.
|
||||
|
@ -189,6 +195,7 @@ class Geom():
|
|||
else:
|
||||
self.origin = np.array(origin)
|
||||
|
||||
|
||||
def set_homogenization(self,homogenization):
|
||||
"""
|
||||
Replaces the existing homogenization index.
|
||||
|
@ -205,34 +212,42 @@ class Geom():
|
|||
else:
|
||||
self.homogenization = homogenization
|
||||
|
||||
|
||||
@property
|
||||
def grid(self):
|
||||
return self.get_grid()
|
||||
|
||||
|
||||
def get_microstructure(self):
|
||||
"""Return the microstructure representation."""
|
||||
return np.copy(self.microstructure)
|
||||
|
||||
|
||||
def get_size(self):
|
||||
"""Return the physical size in meter."""
|
||||
return np.copy(self.size)
|
||||
|
||||
|
||||
def get_origin(self):
|
||||
"""Return the origin in meter."""
|
||||
return np.copy(self.origin)
|
||||
|
||||
|
||||
def get_grid(self):
|
||||
"""Return the grid discretization."""
|
||||
return np.array(self.microstructure.shape)
|
||||
|
||||
|
||||
def get_homogenization(self):
|
||||
"""Return the homogenization index."""
|
||||
return self.homogenization
|
||||
|
||||
|
||||
def get_comments(self):
|
||||
"""Return the comments."""
|
||||
return self.comments[:]
|
||||
|
||||
|
||||
def get_header(self):
|
||||
"""Return the full header (grid, size, origin, homogenization, comments)."""
|
||||
header = ['{} header'.format(len(self.comments)+4)] + self.comments
|
||||
|
@ -242,6 +257,7 @@ class Geom():
|
|||
header.append('homogenization {}'.format(self.get_homogenization()))
|
||||
return header
|
||||
|
||||
|
||||
@staticmethod
|
||||
def from_file(fname):
|
||||
"""
|
||||
|
@ -470,8 +486,8 @@ class Geom():
|
|||
if 'x' in directions:
|
||||
ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0)
|
||||
|
||||
#self.add_comments('geom.py:mirror v{}'.format(version)
|
||||
return self.update(ms,rescale=True)
|
||||
#self.add_comments('tbd')
|
||||
|
||||
|
||||
def scale(self,grid):
|
||||
|
@ -484,6 +500,7 @@ class Geom():
|
|||
new grid dimension
|
||||
|
||||
"""
|
||||
#self.add_comments('geom.py:scale v{}'.format(version)
|
||||
return self.update(
|
||||
ndimage.interpolation.zoom(
|
||||
self.microstructure,
|
||||
|
@ -494,7 +511,6 @@ class Geom():
|
|||
prefilter=False
|
||||
)
|
||||
)
|
||||
#self.add_comments('tbd')
|
||||
|
||||
|
||||
def clean(self,stencil=3):
|
||||
|
@ -511,13 +527,13 @@ class Geom():
|
|||
unique, inverse = np.unique(arr, return_inverse=True)
|
||||
return unique[np.argmax(np.bincount(inverse))]
|
||||
|
||||
#self.add_comments('geom.py:clean v{}'.format(version)
|
||||
return self.update(ndimage.filters.generic_filter(
|
||||
self.microstructure,
|
||||
mostFrequent,
|
||||
size=(stencil,)*3
|
||||
).astype(self.microstructure.dtype)
|
||||
)
|
||||
#self.add_comments('tbd')
|
||||
|
||||
|
||||
def renumber(self):
|
||||
|
@ -526,5 +542,5 @@ class Geom():
|
|||
for i, oldID in enumerate(np.unique(self.microstructure)):
|
||||
renumbered = np.where(self.microstructure == oldID, i+1, renumbered)
|
||||
|
||||
#self.add_comments('geom.py:renumber v{}'.format(version)
|
||||
return self.update(renumbered)
|
||||
#self.add_comments('tbd')
|
||||
|
|
|
@ -9,9 +9,9 @@ def Cauchy(P,F):
|
|||
Parameters
|
||||
----------
|
||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
Deformation gradient.
|
||||
P : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
1. Piola-Kirchhoff stress.
|
||||
First Piola-Kirchhoff stress.
|
||||
|
||||
"""
|
||||
if np.shape(F) == np.shape(P) == (3,3):
|
||||
|
@ -28,7 +28,7 @@ def deviatoric_part(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \
|
||||
|
@ -45,7 +45,7 @@ def eigenvalues(T_sym):
|
|||
Parameters
|
||||
----------
|
||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
|
||||
"""
|
||||
return np.linalg.eigvalsh(symmetric(T_sym))
|
||||
|
@ -60,9 +60,9 @@ def eigenvectors(T_sym,RHS=False):
|
|||
Parameters
|
||||
----------
|
||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
RHS: bool, optional
|
||||
Enforce right-handed coordinate system. Default is False.
|
||||
Enforce right-handed coordinate system. Default is False.
|
||||
|
||||
"""
|
||||
(u,v) = np.linalg.eigh(symmetric(T_sym))
|
||||
|
@ -82,7 +82,7 @@ def left_stretch(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(T,'V')[0]
|
||||
|
@ -95,7 +95,7 @@ def maximum_shear(T_sym):
|
|||
Parameters
|
||||
----------
|
||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = eigenvalues(T_sym)
|
||||
|
@ -110,7 +110,7 @@ def Mises_strain(epsilon):
|
|||
Parameters
|
||||
----------
|
||||
epsilon : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(epsilon,2.0/3.0)
|
||||
|
@ -123,7 +123,7 @@ def Mises_stress(sigma):
|
|||
Parameters
|
||||
----------
|
||||
sigma : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(sigma,3.0/2.0)
|
||||
|
@ -136,9 +136,9 @@ def PK2(P,F):
|
|||
Parameters
|
||||
----------
|
||||
P : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
1. Piola-Kirchhoff stress.
|
||||
First Piola-Kirchhoff stress.
|
||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
Deformation gradient.
|
||||
|
||||
"""
|
||||
if np.shape(F) == np.shape(P) == (3,3):
|
||||
|
@ -155,7 +155,7 @@ def right_stretch(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(T,'U')[0]
|
||||
|
@ -168,7 +168,7 @@ def rotational_part(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(T,'R')[0]
|
||||
|
@ -181,9 +181,9 @@ def spherical_part(T,tensor=False):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if T.shape == (3,3):
|
||||
|
@ -207,11 +207,11 @@ def strain_tensor(F,t,m):
|
|||
Parameters
|
||||
----------
|
||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
Deformation gradient.
|
||||
t : {‘V’, ‘U’}
|
||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
m : float
|
||||
Order of the strain.
|
||||
Order of the strain.
|
||||
|
||||
"""
|
||||
F_ = F.reshape((1,3,3)) if F.shape == (3,3) else F
|
||||
|
@ -242,7 +242,7 @@ def symmetric(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the symmetrized values are computed.
|
||||
Tensor of which the symmetrized values are computed.
|
||||
|
||||
"""
|
||||
return (T+transpose(T))*0.5
|
||||
|
@ -255,7 +255,7 @@ def transpose(T):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the transpose is computed.
|
||||
Tensor of which the transpose is computed.
|
||||
|
||||
"""
|
||||
return T.T if np.shape(T) == (3,3) else \
|
||||
|
@ -269,10 +269,10 @@ def __polar_decomposition(T,requested):
|
|||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Tensor of which the singular values are computed.
|
||||
Tensor of which the singular values are computed.
|
||||
requested : iterable of str
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
||||
"""
|
||||
u, s, vh = np.linalg.svd(T)
|
||||
|
@ -297,9 +297,9 @@ def __Mises(T_sym,s):
|
|||
Parameters
|
||||
----------
|
||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the von Mises equivalent is computed.
|
||||
Symmetric tensor of which the von Mises equivalent is computed.
|
||||
s : float
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
|
||||
"""
|
||||
d = deviatoric_part(T_sym)
|
||||
|
|
|
@ -50,23 +50,23 @@ class Orientation:
|
|||
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.)
|
||||
"""
|
||||
if self.lattice.symmetry != other.lattice.symmetry:
|
||||
raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
|
||||
raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
|
||||
|
||||
mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation
|
||||
otherSymEqs = other.equivalentOrientations()
|
||||
|
||||
for i,sA in enumerate(mySymEqs):
|
||||
aInv = sA.rotation.inversed()
|
||||
for j,sB in enumerate(otherSymEqs):
|
||||
b = sB.rotation
|
||||
r = b*aInv
|
||||
for k in range(2):
|
||||
r.inverse()
|
||||
breaker = self.lattice.symmetry.inFZ(r.asRodrigues(vector=True)) \
|
||||
and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues(vector=True)))
|
||||
if breaker: break
|
||||
aInv = sA.rotation.inversed()
|
||||
for j,sB in enumerate(otherSymEqs):
|
||||
b = sB.rotation
|
||||
r = b*aInv
|
||||
for k in range(2):
|
||||
r.inverse()
|
||||
breaker = self.lattice.symmetry.inFZ(r.asRodrigues(vector=True)) \
|
||||
and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues(vector=True)))
|
||||
if breaker: break
|
||||
if breaker: break
|
||||
if breaker: break
|
||||
if breaker: break
|
||||
|
||||
return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ...
|
||||
# ... own sym, other sym,
|
||||
|
@ -78,11 +78,11 @@ class Orientation:
|
|||
def equivalentOrientations(self,members=[]):
|
||||
"""List of orientations which are symmetrically equivalent."""
|
||||
try:
|
||||
iter(members) # asking for (even empty) list of members?
|
||||
iter(members) # asking for (even empty) list of members?
|
||||
except TypeError:
|
||||
return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object
|
||||
return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object
|
||||
else:
|
||||
return [self.__class__(q*self.rotation,self.lattice) \
|
||||
return [self.__class__(q*self.rotation,self.lattice) \
|
||||
for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations
|
||||
|
||||
def relatedOrientations(self,model):
|
||||
|
@ -94,7 +94,7 @@ class Orientation:
|
|||
def reduced(self):
|
||||
"""Transform orientation to fall into fundamental zone according to symmetry."""
|
||||
for me in self.equivalentOrientations():
|
||||
if self.lattice.symmetry.inFZ(me.rotation.asRodrigues(vector=True)): break
|
||||
if self.lattice.symmetry.inFZ(me.rotation.asRodrigues(vector=True)): break
|
||||
|
||||
return self.__class__(me.rotation,self.lattice)
|
||||
|
||||
|
@ -105,11 +105,11 @@ class Orientation:
|
|||
SST = True):
|
||||
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)."""
|
||||
if SST: # pole requested to be within SST
|
||||
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
|
||||
pole = o.rotation*axis # align crystal direction to axis
|
||||
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
|
||||
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
|
||||
pole = o.rotation*axis # align crystal direction to axis
|
||||
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
|
||||
else:
|
||||
pole = self.rotation*axis # align crystal direction to axis
|
||||
pole = self.rotation*axis # align crystal direction to axis
|
||||
|
||||
return (pole,i if SST else 0)
|
||||
|
||||
|
@ -119,9 +119,9 @@ class Orientation:
|
|||
color = np.zeros(3,'d')
|
||||
|
||||
for o in self.equivalentOrientations():
|
||||
pole = o.rotation*axis # align crystal direction to axis
|
||||
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
|
||||
if inSST: break
|
||||
pole = o.rotation*axis # align crystal direction to axis
|
||||
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
|
||||
if inSST: break
|
||||
|
||||
return color
|
||||
|
||||
|
@ -131,15 +131,15 @@ class Orientation:
|
|||
weights = []):
|
||||
"""Create orientation from average of list of orientations."""
|
||||
if not all(isinstance(item, Orientation) for item in orientations):
|
||||
raise TypeError("Only instances of Orientation can be averaged.")
|
||||
raise TypeError("Only instances of Orientation can be averaged.")
|
||||
|
||||
closest = []
|
||||
ref = orientations[0]
|
||||
for o in orientations:
|
||||
closest.append(o.equivalentOrientations(
|
||||
ref.disorientation(o,
|
||||
SST = False, # select (o[ther]'s) sym orientation
|
||||
symmetries = True)[2]).rotation) # with lowest misorientation
|
||||
closest.append(o.equivalentOrientations(
|
||||
ref.disorientation(o,
|
||||
SST = False, # select (o[ther]'s) sym orientation
|
||||
symmetries = True)[2]).rotation) # with lowest misorientation
|
||||
|
||||
return Orientation(Rotation.fromAverage(closest,weights),ref.lattice)
|
||||
|
||||
|
|
|
@ -287,7 +287,7 @@ class Table:
|
|||
Parameters
|
||||
----------
|
||||
other : Table
|
||||
Table to append
|
||||
Table to append.
|
||||
|
||||
"""
|
||||
if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns):
|
||||
|
@ -305,7 +305,7 @@ class Table:
|
|||
Parameters
|
||||
----------
|
||||
other : Table
|
||||
Table to join
|
||||
Table to join.
|
||||
|
||||
"""
|
||||
if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]:
|
||||
|
|
|
@ -47,9 +47,9 @@ def srepr(arg,glue = '\n'):
|
|||
Parameters
|
||||
----------
|
||||
arg : iterable
|
||||
Items to join.
|
||||
Items to join.
|
||||
glue : str, optional
|
||||
Defaults to \n.
|
||||
Defaults to \n.
|
||||
|
||||
"""
|
||||
if (not hasattr(arg, "strip") and
|
||||
|
@ -66,9 +66,9 @@ def croak(what, newline = True):
|
|||
Parameters
|
||||
----------
|
||||
what : str or iterable
|
||||
Content to be displayed
|
||||
Content to be displayed.
|
||||
newline : bool, optional
|
||||
Separate items of what by newline. Defaults to True.
|
||||
Separate items of what by newline. Defaults to True.
|
||||
|
||||
"""
|
||||
if not what:
|
||||
|
@ -117,13 +117,13 @@ def execute(cmd,
|
|||
Parameters
|
||||
----------
|
||||
cmd : str
|
||||
Command to be executed.
|
||||
Command to be executed.
|
||||
streanIn :, optional
|
||||
Input (via pipe) for executed process.
|
||||
Input (via pipe) for executed process.
|
||||
wd : str, optional
|
||||
Working directory of process. Defaults to ./ .
|
||||
env :
|
||||
Environment
|
||||
Working directory of process. Defaults to ./ .
|
||||
env : dict, optional
|
||||
Environment for execution.
|
||||
|
||||
"""
|
||||
initialPath = os.getcwd()
|
||||
|
@ -140,7 +140,7 @@ def execute(cmd,
|
|||
error = error.decode('utf-8').replace('\x08','')
|
||||
os.chdir(initialPath)
|
||||
if process.returncode != 0:
|
||||
raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
return out,error
|
||||
|
||||
|
||||
|
@ -158,11 +158,11 @@ class extendableOption(Option):
|
|||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||
|
||||
def take_action(self, action, dest, opt, value, values, parser):
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
|
||||
|
||||
class _ProgressBar:
|
||||
|
@ -179,11 +179,11 @@ class _ProgressBar:
|
|||
Parameters
|
||||
----------
|
||||
total : int
|
||||
Total # of iterations.
|
||||
Total # of iterations.
|
||||
prefix : str
|
||||
Prefix string.
|
||||
Prefix string.
|
||||
bar_length : int
|
||||
Character length of bar.
|
||||
Character length of bar.
|
||||
|
||||
"""
|
||||
self.total = total
|
||||
|
@ -224,13 +224,13 @@ def show_progress(iterable,N_iter=None,prefix='',bar_length=50):
|
|||
Parameters
|
||||
----------
|
||||
iterable : iterable/function with yield statement
|
||||
Iterable (or function with yield statement) to be decorated.
|
||||
Iterable (or function with yield statement) to be decorated.
|
||||
N_iter : int
|
||||
Total # of iterations. Needed if number of iterations can not be obtained as len(iterable).
|
||||
Total # of iterations. Needed if number of iterations can not be obtained as len(iterable).
|
||||
prefix : str, optional.
|
||||
Prefix string.
|
||||
Prefix string.
|
||||
bar_length : int, optional
|
||||
Character length of bar. Defaults to 50.
|
||||
Character length of bar. Defaults to 50.
|
||||
|
||||
"""
|
||||
status = _ProgressBar(N_iter if N_iter else len(iterable),prefix,bar_length)
|
||||
|
@ -268,7 +268,7 @@ class return_message():
|
|||
Parameters
|
||||
----------
|
||||
message : str or list of str
|
||||
message for output to screen
|
||||
message for output to screen
|
||||
|
||||
"""
|
||||
self.message = message
|
||||
|
|
Loading…
Reference in New Issue