whitespace cleaning and other polishing

This commit is contained in:
Martin Diehl 2020-03-14 21:53:48 +01:00
parent 38b755740b
commit b4679fabfc
6 changed files with 535 additions and 525 deletions

View File

@ -1,6 +1,6 @@
import numpy as np import numpy as np
class Color(): class Color:
"""Color representation in and conversion between different color-spaces.""" """Color representation in and conversion between different color-spaces."""
__slots__ = [ __slots__ = [
@ -13,544 +13,538 @@ class Color():
def __init__(self, def __init__(self,
model = 'RGB', model = 'RGB',
color = np.zeros(3,'d')): color = np.zeros(3,'d')):
""" """
Create a Color object. Create a Color object.
Parameters Parameters
---------- ----------
model : string model : string
color model color model
color : numpy.ndarray color : numpy.ndarray
vector representing the color according to the selected model vector representing the color according to the selected model
""" """
self.__transforms__ = \ self.__transforms__ = \
{'HSV': {'index': 0, 'next': self._HSV2HSL}, {'HSV': {'index': 0, 'next': self._HSV2HSL},
'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV}, 'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV},
'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL}, 'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB}, 'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ}, 'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
'MSH': {'index': 5, 'prev': self._MSH2CIELAB}, 'MSH': {'index': 5, 'prev': self._MSH2CIELAB},
} }
model = model.upper() model = model.upper()
if model not in list(self.__transforms__.keys()): model = 'RGB' if model not in list(self.__transforms__.keys()): model = 'RGB'
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ? if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
for i in range(3): for i in range(3):
color[i] /= 255.0 # rescale to RGB color[i] /= 255.0 # rescale to RGB
if model == 'HSL': # are we HSL ? if model == 'HSL': # are we HSL ?
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue? if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
self.model = model self.model = model
self.color = np.array(color,'d') self.color = np.array(color,'d')
def __repr__(self): def __repr__(self):
"""Color model and values.""" """Color model and values."""
return 'Model: %s Color: %s'%(self.model,str(self.color)) return 'Model: %s Color: %s'%(self.model,str(self.color))
def __str__(self): def __str__(self):
"""Color model and values.""" """Color model and values."""
return self.__repr__() return self.__repr__()
def convert_to(self,toModel = 'RGB'): def convert_to(self,toModel = 'RGB'):
""" """
Change the color model permanently. Change the color model permanently.
Parameters Parameters
---------- ----------
toModel : string toModel : string
color model color model
""" """
toModel = toModel.upper() toModel = toModel.upper()
if toModel not in list(self.__transforms__.keys()): return if toModel not in list(self.__transforms__.keys()): return
sourcePos = self.__transforms__[self.model]['index'] sourcePos = self.__transforms__[self.model]['index']
targetPos = self.__transforms__[toModel]['index'] targetPos = self.__transforms__[toModel]['index']
while sourcePos < targetPos: while sourcePos < targetPos:
self.__transforms__[self.model]['next']() self.__transforms__[self.model]['next']()
sourcePos += 1 sourcePos += 1
while sourcePos > targetPos: while sourcePos > targetPos:
self.__transforms__[self.model]['prev']() self.__transforms__[self.model]['prev']()
sourcePos -= 1 sourcePos -= 1
return self return self
def express_as(self,asModel = 'RGB'): def express_as(self,asModel = 'RGB'):
""" """
Return the color in a different model. Return the color in a different model.
Parameters Parameters
---------- ----------
asModel : string asModel : string
color model color model
"""
return self.__class__(self.model,self.color).convert_to(asModel)
"""
return self.__class__(self.model,self.color).convert_to(asModel)
def _HSV2HSL(self): def _HSV2HSL(self):
""" """
Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance). Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance).
All values are in the range [0,1] All values are in the range [0,1]
http://codeitdown.com/hsl-hsb-hsv-color http://codeitdown.com/hsl-hsb-hsv-color
""" """
if self.model != 'HSV': return if self.model != 'HSV': return
converted = Color('HSL',np.array([ converted = Color('HSL',np.array([
self.color[0], self.color[0],
1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \ 1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \
else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)), else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)),
0.5*self.color[2]*(2.-self.color[1]), 0.5*self.color[2]*(2.-self.color[1]),
])) ]))
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _HSL2HSV(self): def _HSL2HSV(self):
""" """
Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness). Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness).
All values are in the range [0,1] All values are in the range [0,1]
http://codeitdown.com/hsl-hsb-hsv-color http://codeitdown.com/hsl-hsb-hsv-color
""" """
if self.model != 'HSL': return if self.model != 'HSL': return
h = self.color[0] h = self.color[0]
b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1))) b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1)))
s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b
converted = Color('HSV',np.array([h,s,b])) converted = Color('HSV',np.array([h,s,b]))
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _HSL2RGB(self): def _HSL2RGB(self):
""" """
Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue). Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue).
All values are in the range [0,1] All values are in the range [0,1]
from http://en.wikipedia.org/wiki/HSL_and_HSV from http://en.wikipedia.org/wiki/HSL_and_HSV
""" """
if self.model != 'HSL': return if self.model != 'HSL': return
sextant = self.color[0]*6.0 sextant = self.color[0]*6.0
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1] c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
x = c*(1.0 - abs(sextant%2 - 1.0)) x = c*(1.0 - abs(sextant%2 - 1.0))
m = self.color[2] - 0.5*c m = self.color[2] - 0.5*c
converted = Color('RGB',np.array([ converted = Color('RGB',np.array([
[c+m, x+m, m], [c+m, x+m, m],
[x+m, c+m, m], [x+m, c+m, m],
[m, c+m, x+m], [m, c+m, x+m],
[m, x+m, c+m], [m, x+m, c+m],
[x+m, m, c+m], [x+m, m, c+m],
[c+m, m, x+m], [c+m, m, x+m],
][int(sextant)],'d')) ][int(sextant)],'d'))
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _RGB2HSL(self): def _RGB2HSL(self):
""" """
Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance). Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance).
All values are in the range [0,1] All values are in the range [0,1]
from http://130.113.54.154/~monger/hsl-rgb.html from http://130.113.54.154/~monger/hsl-rgb.html
""" """
if self.model != 'RGB': return if self.model != 'RGB': return
HSL = np.zeros(3,'d') HSL = np.zeros(3,'d')
maxcolor = self.color.max() maxcolor = self.color.max()
mincolor = self.color.min() mincolor = self.color.min()
HSL[2] = (maxcolor + mincolor)/2.0 HSL[2] = (maxcolor + mincolor)/2.0
if(mincolor == maxcolor): if(mincolor == maxcolor):
HSL[0] = 0.0 HSL[0] = 0.0
HSL[1] = 0.0 HSL[1] = 0.0
else:
if (HSL[2]<0.5):
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
else: else:
HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor) if (HSL[2]<0.5):
if (maxcolor == self.color[0]): HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor) else:
elif (maxcolor == self.color[1]): HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor)
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor) if (maxcolor == self.color[0]):
elif (maxcolor == self.color[2]): HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor) elif (maxcolor == self.color[1]):
HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
if (HSL[0] < 0.0): elif (maxcolor == self.color[2]):
HSL[0] = HSL[0] + 360.0 HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
for i in range(2): HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values
HSL[i+1] = min(HSL[i+1],1.0) if (HSL[0] < 0.0):
HSL[i+1] = max(HSL[i+1],0.0) HSL[0] = HSL[0] + 360.0
for i in range(2):
converted = Color('HSL', HSL) HSL[i+1] = min(HSL[i+1],1.0)
self.model = converted.model HSL[i+1] = max(HSL[i+1],0.0)
self.color = converted.color
converted = Color('HSL', HSL)
self.model = converted.model
self.color = converted.color
def _RGB2XYZ(self): def _RGB2XYZ(self):
""" """
Convert R(ed) G(reen) B(lue) to CIE XYZ. Convert R(ed) G(reen) B(lue) to CIE XYZ.
All values are in the range [0,1] All values are in the range [0,1]
from http://www.cs.rit.edu/~ncs/color/t_convert.html from http://www.cs.rit.edu/~ncs/color/t_convert.html
""" """
if self.model != 'RGB': return if self.model != 'RGB': return
XYZ = np.zeros(3,'d') XYZ = np.zeros(3,'d')
RGB_lin = np.zeros(3,'d') RGB_lin = np.zeros(3,'d')
convert = np.array([[0.412453,0.357580,0.180423], convert = np.array([[0.412453,0.357580,0.180423],
[0.212671,0.715160,0.072169], [0.212671,0.715160,0.072169],
[0.019334,0.119193,0.950227]]) [0.019334,0.119193,0.950227]])
for i in range(3): for i in range(3):
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4 if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
else: RGB_lin[i] = self.color[i] /12.92 else: RGB_lin[i] = self.color[i] /12.92
XYZ = np.dot(convert,RGB_lin) XYZ = np.dot(convert,RGB_lin)
for i in range(3): for i in range(3):
XYZ[i] = max(XYZ[i],0.0)
XYZ[i] = max(XYZ[i],0.0)
converted = Color('XYZ', XYZ)
self.model = converted.model
self.color = converted.color
converted = Color('XYZ', XYZ)
self.model = converted.model
self.color = converted.color
def _XYZ2RGB(self): def _XYZ2RGB(self):
""" """
Convert CIE XYZ to R(ed) G(reen) B(lue). Convert CIE XYZ to R(ed) G(reen) B(lue).
All values are in the range [0,1] All values are in the range [0,1]
from http://www.cs.rit.edu/~ncs/color/t_convert.html from http://www.cs.rit.edu/~ncs/color/t_convert.html
""" """
if self.model != 'XYZ': if self.model != 'XYZ': return
return
convert = np.array([[ 3.240479,-1.537150,-0.498535], convert = np.array([[ 3.240479,-1.537150,-0.498535],
[-0.969256, 1.875992, 0.041556], [-0.969256, 1.875992, 0.041556],
[ 0.055648,-0.204043, 1.057311]]) [ 0.055648,-0.204043, 1.057311]])
RGB_lin = np.dot(convert,self.color) RGB_lin = np.dot(convert,self.color)
RGB = np.zeros(3,'d') RGB = np.zeros(3,'d')
for i in range(3): for i in range(3):
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555 if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
else: RGB[i] = RGB_lin[i] *12.92 else: RGB[i] = RGB_lin[i] *12.92
for i in range(3): for i in range(3):
RGB[i] = min(RGB[i],1.0) RGB[i] = min(RGB[i],1.0)
RGB[i] = max(RGB[i],0.0) RGB[i] = max(RGB[i],0.0)
maxVal = max(RGB) # clipping colors according to the display gamut maxVal = max(RGB) # clipping colors according to the display gamut
if (maxVal > 1.0): RGB /= maxVal if (maxVal > 1.0): RGB /= maxVal
converted = Color('RGB', RGB)
self.model = converted.model
self.color = converted.color
converted = Color('RGB', RGB)
self.model = converted.model
self.color = converted.color
def _CIELAB2XYZ(self): def _CIELAB2XYZ(self):
""" """
Convert CIE Lab to CIE XYZ. Convert CIE Lab to CIE XYZ.
All values are in the range [0,1] All values are in the range [0,1]
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7 from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
""" """
if self.model != 'CIELAB': return if self.model != 'CIELAB': return
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65 ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
XYZ = np.zeros(3,'d') XYZ = np.zeros(3,'d')
XYZ[1] = (self.color[0] + 16.0 ) / 116.0 XYZ[1] = (self.color[0] + 16.0 ) / 116.0
XYZ[0] = XYZ[1] + self.color[1]/ 500.0 XYZ[0] = XYZ[1] + self.color[1]/ 500.0
XYZ[2] = XYZ[1] - self.color[2]/ 200.0 XYZ[2] = XYZ[1] - self.color[2]/ 200.0
for i in range(len(XYZ)): for i in range(len(XYZ)):
if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3. if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3.
else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.) else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.)
converted = Color('XYZ', XYZ*ref_white) converted = Color('XYZ', XYZ*ref_white)
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _XYZ2CIELAB(self): def _XYZ2CIELAB(self):
""" """
Convert CIE XYZ to CIE Lab. Convert CIE XYZ to CIE Lab.
All values are in the range [0,1] All values are in the range [0,1]
from http://en.wikipedia.org/wiki/Lab_color_space, from http://en.wikipedia.org/wiki/Lab_color_space,
http://www.cs.rit.edu/~ncs/color/t_convert.html http://www.cs.rit.edu/~ncs/color/t_convert.html
""" """
if self.model != 'XYZ': return if self.model != 'XYZ': return
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65 ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
XYZ = self.color/ref_white XYZ = self.color/ref_white
for i in range(len(XYZ)): for i in range(len(XYZ)):
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0) if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0 else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0, converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
500.0 * (XYZ[0] - XYZ[1]), 500.0 * (XYZ[0] - XYZ[1]),
200.0 * (XYZ[1] - XYZ[2]) ])) 200.0 * (XYZ[1] - XYZ[2]) ]))
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _CIELAB2MSH(self): def _CIELAB2MSH(self):
""" """
Convert CIE Lab to Msh colorspace. Convert CIE Lab to Msh colorspace.
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
""" """
if self.model != 'CIELAB': return if self.model != 'CIELAB': return
Msh = np.zeros(3,'d') Msh = np.zeros(3,'d')
Msh[0] = np.sqrt(np.dot(self.color,self.color)) Msh[0] = np.sqrt(np.dot(self.color,self.color))
if (Msh[0] > 0.001): if (Msh[0] > 0.001):
Msh[1] = np.arccos(self.color[0]/Msh[0]) Msh[1] = np.arccos(self.color[0]/Msh[0])
if (self.color[1] != 0.0): if (self.color[1] != 0.0):
Msh[2] = np.arctan2(self.color[2],self.color[1]) Msh[2] = np.arctan2(self.color[2],self.color[1])
converted = Color('MSH', Msh) converted = Color('MSH', Msh)
self.model = converted.model self.model = converted.model
self.color = converted.color self.color = converted.color
def _MSH2CIELAB(self): def _MSH2CIELAB(self):
"""
Convert Msh colorspace to CIE Lab.
with s,h in radians
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
"""
if self.model != 'MSH': return
Lab = np.zeros(3,'d')
Lab[0] = self.color[0] * np.cos(self.color[1])
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2])
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2])
converted = Color('CIELAB', Lab)
self.model = converted.model
self.color = converted.color
class Colormap:
"""Perceptually uniform diverging or sequential colormap."""
__slots__ = [
'left',
'right',
'interpolate',
]
__predefined__ = {
'gray': {'left': Color('HSL',[0,1,1]),
'right': Color('HSL',[0,0,0.15]),
'interpolate': 'perceptualuniform'},
'grey': {'left': Color('HSL',[0,1,1]),
'right': Color('HSL',[0,0,0.15]),
'interpolate': 'perceptualuniform'},
'red': {'left': Color('HSL',[0,1,0.14]),
'right': Color('HSL',[0,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'green': {'left': Color('HSL',[0.33333,1,0.14]),
'right': Color('HSL',[0.33333,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'blue': {'left': Color('HSL',[0.66,1,0.14]),
'right': Color('HSL',[0.66,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'seaweed': {'left': Color('HSL',[0.78,1.0,0.1]),
'right': Color('HSL',[0.40000,0.1,0.9]),
'interpolate': 'perceptualuniform'},
'bluebrown': {'left': Color('HSL',[0.65,0.53,0.49]),
'right': Color('HSL',[0.11,0.75,0.38]),
'interpolate': 'perceptualuniform'},
'redgreen': {'left': Color('HSL',[0.97,0.96,0.36]),
'right': Color('HSL',[0.33333,1.0,0.14]),
'interpolate': 'perceptualuniform'},
'bluered': {'left': Color('HSL',[0.65,0.53,0.49]),
'right': Color('HSL',[0.97,0.96,0.36]),
'interpolate': 'perceptualuniform'},
'blueredrainbow':{'left': Color('HSL',[2.0/3.0,1,0.5]),
'right': Color('HSL',[0,1,0.5]),
'interpolate': 'linear' },
'orientation': {'left': Color('RGB',[0.933334,0.878432,0.878431]),
'right': Color('RGB',[0.250980,0.007843,0.000000]),
'interpolate': 'perceptualuniform'},
'strain': {'left': Color('RGB',[0.941177,0.941177,0.870588]),
'right': Color('RGB',[0.266667,0.266667,0.000000]),
'interpolate': 'perceptualuniform'},
'stress': {'left': Color('RGB',[0.878432,0.874511,0.949019]),
'right': Color('RGB',[0.000002,0.000000,0.286275]),
'interpolate': 'perceptualuniform'},
}
# ------------------------------------------------------------------
def __init__(self,
left = Color('RGB',[1,1,1]),
right = Color('RGB',[0,0,0]),
interpolate = 'perceptualuniform',
predefined = None
):
""" """
Convert Msh colorspace to CIE Lab. Create a Colormap object.
Parameters
----------
left : Color
left color (minimum value)
right : Color
right color (maximum value)
interpolate : str
interpolation scheme (either 'perceptualuniform' or 'linear')
predefined : bool
ignore other arguments and use predefined definition
with s,h in radians
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
""" """
if self.model != 'MSH': return if predefined is not None:
left = self.__predefined__[predefined.lower()]['left']
right= self.__predefined__[predefined.lower()]['right']
interpolate = self.__predefined__[predefined.lower()]['interpolate']
Lab = np.zeros(3,'d') if left.__class__.__name__ != 'Color':
Lab[0] = self.color[0] * np.cos(self.color[1]) left = Color()
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2]) if right.__class__.__name__ != 'Color':
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2]) right = Color()
converted = Color('CIELAB', Lab) self.left = left
self.model = converted.model self.right = right
self.color = converted.color self.interpolate = interpolate
class Colormap(): # ------------------------------------------------------------------
"""Perceptually uniform diverging or sequential colormap.""" def __repr__(self):
"""Left and right value of colormap."""
__slots__ = [ return 'Left: %s Right: %s'%(self.left,self.right)
'left',
'right',
'interpolate',
]
__predefined__ = {
'gray': {'left': Color('HSL',[0,1,1]),
'right': Color('HSL',[0,0,0.15]),
'interpolate': 'perceptualuniform'},
'grey': {'left': Color('HSL',[0,1,1]),
'right': Color('HSL',[0,0,0.15]),
'interpolate': 'perceptualuniform'},
'red': {'left': Color('HSL',[0,1,0.14]),
'right': Color('HSL',[0,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'green': {'left': Color('HSL',[0.33333,1,0.14]),
'right': Color('HSL',[0.33333,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'blue': {'left': Color('HSL',[0.66,1,0.14]),
'right': Color('HSL',[0.66,0.35,0.91]),
'interpolate': 'perceptualuniform'},
'seaweed': {'left': Color('HSL',[0.78,1.0,0.1]),
'right': Color('HSL',[0.40000,0.1,0.9]),
'interpolate': 'perceptualuniform'},
'bluebrown': {'left': Color('HSL',[0.65,0.53,0.49]),
'right': Color('HSL',[0.11,0.75,0.38]),
'interpolate': 'perceptualuniform'},
'redgreen': {'left': Color('HSL',[0.97,0.96,0.36]),
'right': Color('HSL',[0.33333,1.0,0.14]),
'interpolate': 'perceptualuniform'},
'bluered': {'left': Color('HSL',[0.65,0.53,0.49]),
'right': Color('HSL',[0.97,0.96,0.36]),
'interpolate': 'perceptualuniform'},
'blueredrainbow':{'left': Color('HSL',[2.0/3.0,1,0.5]),
'right': Color('HSL',[0,1,0.5]),
'interpolate': 'linear' },
'orientation': {'left': Color('RGB',[0.933334,0.878432,0.878431]),
'right': Color('RGB',[0.250980,0.007843,0.000000]),
'interpolate': 'perceptualuniform'},
'strain': {'left': Color('RGB',[0.941177,0.941177,0.870588]),
'right': Color('RGB',[0.266667,0.266667,0.000000]),
'interpolate': 'perceptualuniform'},
'stress': {'left': Color('RGB',[0.878432,0.874511,0.949019]),
'right': Color('RGB',[0.000002,0.000000,0.286275]),
'interpolate': 'perceptualuniform'},
}
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __init__(self, def invert(self):
left = Color('RGB',[1,1,1]), """Switch left/minimum with right/maximum."""
right = Color('RGB',[0,0,0]), (self.left, self.right) = (self.right, self.left)
interpolate = 'perceptualuniform', return self
predefined = None
):
"""
Create a Colormap object.
Parameters
----------
left : Color
left color (minimum value)
right : Color
right color (maximum value)
interpolate : str
interpolation scheme (either 'perceptualuniform' or 'linear')
predefined : bool
ignore other arguments and use predefined definition
"""
if predefined is not None:
left = self.__predefined__[predefined.lower()]['left']
right= self.__predefined__[predefined.lower()]['right']
interpolate = self.__predefined__[predefined.lower()]['interpolate']
if left.__class__.__name__ != 'Color':
left = Color()
if right.__class__.__name__ != 'Color':
right = Color()
self.left = left
self.right = right
self.interpolate = interpolate
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __repr__(self): def show_predefined(self):
"""Left and right value of colormap.""" """Show the labels of the predefined colormaps."""
return 'Left: %s Right: %s'%(self.left,self.right) print('\n'.join(self.__predefined__.keys()))
# ------------------------------------------------------------------
def color(self,fraction = 0.5):
# ------------------------------------------------------------------ def interpolate_Msh(lo, hi, frac):
def invert(self):
"""Switch left/minimum with right/maximum."""
(self.left, self.right) = (self.right, self.left)
return self
def rad_diff(a,b):
return abs(a[2]-b[2])
# if saturation of one of the two colors is too less than the other, hue of the less
def adjust_hue(Msh_sat, Msh_unsat):
if Msh_sat[0] >= Msh_unsat[0]:
return Msh_sat[2]
else:
hSpin = Msh_sat[1]/np.sin(Msh_sat[1])*np.sqrt(Msh_unsat[0]**2.0-Msh_sat[0]**2)/Msh_sat[0]
if Msh_sat[2] < - np.pi/3.0: hSpin *= -1.0
return Msh_sat[2] + hSpin
# ------------------------------------------------------------------ Msh1 = np.array(lo[:])
def show_predefined(self): Msh2 = np.array(hi[:])
"""Show the labels of the predefined colormaps."""
print('\n'.join(self.__predefined__.keys()))
# ------------------------------------------------------------------ if (Msh1[1] > 0.05 and Msh2[1] > 0.05 and rad_diff(Msh1,Msh2) > np.pi/3.0):
def color(self,fraction = 0.5): M_mid = max(Msh1[0],Msh2[0],88.0)
if frac < 0.5:
Msh2 = np.array([M_mid,0.0,0.0],'d')
frac *= 2.0
else:
Msh1 = np.array([M_mid,0.0,0.0],'d')
frac = 2.0*frac - 1.0
if Msh1[1] < 0.05 and Msh2[1] > 0.05: Msh1[2] = adjust_hue(Msh2,Msh1)
elif Msh1[1] > 0.05 and Msh2[1] < 0.05: Msh2[2] = adjust_hue(Msh1,Msh2)
Msh = (1.0 - frac) * Msh1 + frac * Msh2
def interpolate_Msh(lo, hi, frac): return Color('MSH',Msh)
def rad_diff(a,b): def interpolate_linear(lo, hi, frac):
return abs(a[2]-b[2]) """Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
# if saturation of one of the two colors is too less than the other, hue of the less interpolation = (1.0 - frac) * np.array(lo.color[:]) \
def adjust_hue(Msh_sat, Msh_unsat): + frac * np.array(hi.express_as(lo.model).color[:])
if Msh_sat[0] >= Msh_unsat[0]:
return Msh_sat[2]
else:
hSpin = Msh_sat[1]/np.sin(Msh_sat[1])*np.sqrt(Msh_unsat[0]**2.0-Msh_sat[0]**2)/Msh_sat[0]
if Msh_sat[2] < - np.pi/3.0: hSpin *= -1.0
return Msh_sat[2] + hSpin
Msh1 = np.array(lo[:]) return Color(lo.model,interpolation)
Msh2 = np.array(hi[:])
if (Msh1[1] > 0.05 and Msh2[1] > 0.05 and rad_diff(Msh1,Msh2) > np.pi/3.0): if self.interpolate == 'perceptualuniform':
M_mid = max(Msh1[0],Msh2[0],88.0) return interpolate_Msh(self.left.express_as('MSH').color,
if frac < 0.5: self.right.express_as('MSH').color,fraction)
Msh2 = np.array([M_mid,0.0,0.0],'d') elif self.interpolate == 'linear':
frac *= 2.0 return interpolate_linear(self.left,
else: self.right,fraction)
Msh1 = np.array([M_mid,0.0,0.0],'d') else:
frac = 2.0*frac - 1.0 raise NameError('unknown color interpolation method')
if Msh1[1] < 0.05 and Msh2[1] > 0.05: Msh1[2] = adjust_hue(Msh2,Msh1)
elif Msh1[1] > 0.05 and Msh2[1] < 0.05: Msh2[2] = adjust_hue(Msh1,Msh2)
Msh = (1.0 - frac) * Msh1 + frac * Msh2
return Color('MSH',Msh) # ------------------------------------------------------------------
def export(self,name = 'uniformPerceptualColorMap',\
format = 'paraview',\
steps = 2,\
crop = [-1.0,1.0],
model = 'RGB'):
"""
[RGB] colormap for use in paraview or gmsh, or as raw string, or array.
def interpolate_linear(lo, hi, frac): Arguments: name, format, steps, crop.
"""Linear interpolation between lo and hi color at given fraction; output in model of lo color.""" Format is one of (paraview, gmsh, raw, list).
interpolation = (1.0 - frac) * np.array(lo.color[:]) \ Crop selects a (sub)range in [-1.0,1.0].
+ frac * np.array(hi.express_as(lo.model).color[:]) Generates sequential map if one limiting color is either white or black,
diverging map otherwise.
"""
format = format.lower() # consistent comparison basis
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
if format == 'paraview':
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
for i,color in enumerate(colors[:-1])] \
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(len(colors),colors[-1][0],colors[-1][1],colors[-1][2],)] \
+ [' ]\n }\n]']
return Color(lo.model,interpolation) elif format == 'gmsh':
colormap = ['View.ColorTable = {'] \
+ [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \
+ ['}']
if self.interpolate == 'perceptualuniform': elif format == 'gom':
return interpolate_Msh(self.left.express_as('MSH').color, colormap = ['1 1 ' + str(name)
self.right.express_as('MSH').color,fraction) + ' 9 ' + str(name)
elif self.interpolate == 'linear': + ' 0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 '
return interpolate_linear(self.left, + '30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 ' + str(len(colors))
self.right,fraction) + ' '.join([' 0 %s 255 1'%(' '.join([str(int(x*255.0)) for x in color])) for color in reversed(colors)])]
else:
raise NameError('unknown color interpolation method')
# ------------------------------------------------------------------ elif format == 'raw':
def export(self,name = 'uniformPerceptualColorMap',\ colormap = ['\t'.join(map(str,color)) for color in colors]
format = 'paraview',\
steps = 2,\
crop = [-1.0,1.0],
model = 'RGB'):
"""
[RGB] colormap for use in paraview or gmsh, or as raw string, or array.
Arguments: name, format, steps, crop. elif format == 'list':
Format is one of (paraview, gmsh, raw, list). colormap = colors
Crop selects a (sub)range in [-1.0,1.0].
Generates sequential map if one limiting color is either white or black,
diverging map otherwise.
"""
format = format.lower() # consistent comparison basis
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
if format == 'paraview':
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
for i,color in enumerate(colors[:-1])] \
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(len(colors),colors[-1][0],colors[-1][1],colors[-1][2],)] \
+ [' ]\n }\n]']
elif format == 'gmsh': else:
colormap = ['View.ColorTable = {'] \ raise NameError('unknown color export format')
+ [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \
+ ['}']
elif format == 'gom': return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap
colormap = ['1 1 ' + str(name)
+ ' 9 ' + str(name)
+ ' 0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 '
+ '30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 ' + str(len(colors))
+ ' '.join([' 0 %s 255 1'%(' '.join([str(int(x*255.0)) for x in color])) for color in reversed(colors)])]
elif format == 'raw':
colormap = ['\t'.join(map(str,color)) for color in colors]
elif format == 'list':
colormap = colors
else:
raise NameError('unknown color export format')
return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap

View File

@ -49,6 +49,7 @@ class Geom():
'max microstructure: {}'.format(np.nanmax(self.microstructure)), 'max microstructure: {}'.format(np.nanmax(self.microstructure)),
]) ])
def update(self,microstructure=None,size=None,origin=None,rescale=False): def update(self,microstructure=None,size=None,origin=None,rescale=False):
""" """
Updates microstructure and size. Updates microstructure and size.
@ -111,6 +112,7 @@ class Geom():
return util.return_message(message) return util.return_message(message)
def set_comments(self,comments): def set_comments(self,comments):
""" """
Replaces all existing comments. Replaces all existing comments.
@ -124,6 +126,7 @@ class Geom():
self.comments = [] self.comments = []
self.add_comments(comments) self.add_comments(comments)
def add_comments(self,comments): def add_comments(self,comments):
""" """
Appends comments to existing comments. Appends comments to existing comments.
@ -136,6 +139,7 @@ class Geom():
""" """
self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)] self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]
def set_microstructure(self,microstructure): def set_microstructure(self,microstructure):
""" """
Replaces the existing microstructure representation. Replaces the existing microstructure representation.
@ -154,6 +158,7 @@ class Geom():
else: else:
self.microstructure = np.copy(microstructure) self.microstructure = np.copy(microstructure)
def set_size(self,size): def set_size(self,size):
""" """
Replaces the existing size information. Replaces the existing size information.
@ -173,6 +178,7 @@ class Geom():
else: else:
self.size = np.array(size) self.size = np.array(size)
def set_origin(self,origin): def set_origin(self,origin):
""" """
Replaces the existing origin information. Replaces the existing origin information.
@ -189,6 +195,7 @@ class Geom():
else: else:
self.origin = np.array(origin) self.origin = np.array(origin)
def set_homogenization(self,homogenization): def set_homogenization(self,homogenization):
""" """
Replaces the existing homogenization index. Replaces the existing homogenization index.
@ -205,34 +212,42 @@ class Geom():
else: else:
self.homogenization = homogenization self.homogenization = homogenization
@property @property
def grid(self): def grid(self):
return self.get_grid() return self.get_grid()
def get_microstructure(self): def get_microstructure(self):
"""Return the microstructure representation.""" """Return the microstructure representation."""
return np.copy(self.microstructure) return np.copy(self.microstructure)
def get_size(self): def get_size(self):
"""Return the physical size in meter.""" """Return the physical size in meter."""
return np.copy(self.size) return np.copy(self.size)
def get_origin(self): def get_origin(self):
"""Return the origin in meter.""" """Return the origin in meter."""
return np.copy(self.origin) return np.copy(self.origin)
def get_grid(self): def get_grid(self):
"""Return the grid discretization.""" """Return the grid discretization."""
return np.array(self.microstructure.shape) return np.array(self.microstructure.shape)
def get_homogenization(self): def get_homogenization(self):
"""Return the homogenization index.""" """Return the homogenization index."""
return self.homogenization return self.homogenization
def get_comments(self): def get_comments(self):
"""Return the comments.""" """Return the comments."""
return self.comments[:] return self.comments[:]
def get_header(self): def get_header(self):
"""Return the full header (grid, size, origin, homogenization, comments).""" """Return the full header (grid, size, origin, homogenization, comments)."""
header = ['{} header'.format(len(self.comments)+4)] + self.comments header = ['{} header'.format(len(self.comments)+4)] + self.comments
@ -242,6 +257,7 @@ class Geom():
header.append('homogenization {}'.format(self.get_homogenization())) header.append('homogenization {}'.format(self.get_homogenization()))
return header return header
@staticmethod @staticmethod
def from_file(fname): def from_file(fname):
""" """
@ -470,8 +486,8 @@ class Geom():
if 'x' in directions: if 'x' in directions:
ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0) ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0)
#self.add_comments('geom.py:mirror v{}'.format(version)
return self.update(ms,rescale=True) return self.update(ms,rescale=True)
#self.add_comments('tbd')
def scale(self,grid): def scale(self,grid):
@ -484,6 +500,7 @@ class Geom():
new grid dimension new grid dimension
""" """
#self.add_comments('geom.py:scale v{}'.format(version)
return self.update( return self.update(
ndimage.interpolation.zoom( ndimage.interpolation.zoom(
self.microstructure, self.microstructure,
@ -494,7 +511,6 @@ class Geom():
prefilter=False prefilter=False
) )
) )
#self.add_comments('tbd')
def clean(self,stencil=3): def clean(self,stencil=3):
@ -511,13 +527,13 @@ class Geom():
unique, inverse = np.unique(arr, return_inverse=True) unique, inverse = np.unique(arr, return_inverse=True)
return unique[np.argmax(np.bincount(inverse))] return unique[np.argmax(np.bincount(inverse))]
#self.add_comments('geom.py:clean v{}'.format(version)
return self.update(ndimage.filters.generic_filter( return self.update(ndimage.filters.generic_filter(
self.microstructure, self.microstructure,
mostFrequent, mostFrequent,
size=(stencil,)*3 size=(stencil,)*3
).astype(self.microstructure.dtype) ).astype(self.microstructure.dtype)
) )
#self.add_comments('tbd')
def renumber(self): def renumber(self):
@ -526,5 +542,5 @@ class Geom():
for i, oldID in enumerate(np.unique(self.microstructure)): for i, oldID in enumerate(np.unique(self.microstructure)):
renumbered = np.where(self.microstructure == oldID, i+1, renumbered) renumbered = np.where(self.microstructure == oldID, i+1, renumbered)
#self.add_comments('geom.py:renumber v{}'.format(version)
return self.update(renumbered) return self.update(renumbered)
#self.add_comments('tbd')

View File

@ -9,9 +9,9 @@ def Cauchy(P,F):
Parameters Parameters
---------- ----------
F : numpy.ndarray of shape (:,3,3) or (3,3) F : numpy.ndarray of shape (:,3,3) or (3,3)
Deformation gradient. Deformation gradient.
P : numpy.ndarray of shape (:,3,3) or (3,3) P : numpy.ndarray of shape (:,3,3) or (3,3)
1. Piola-Kirchhoff stress. First Piola-Kirchhoff stress.
""" """
if np.shape(F) == np.shape(P) == (3,3): if np.shape(F) == np.shape(P) == (3,3):
@ -28,7 +28,7 @@ def deviatoric_part(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the deviatoric part is computed. Tensor of which the deviatoric part is computed.
""" """
return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \ return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \
@ -45,7 +45,7 @@ def eigenvalues(T_sym):
Parameters Parameters
---------- ----------
T_sym : numpy.ndarray of shape (:,3,3) or (3,3) T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvalues are computed. Symmetric tensor of which the eigenvalues are computed.
""" """
return np.linalg.eigvalsh(symmetric(T_sym)) return np.linalg.eigvalsh(symmetric(T_sym))
@ -60,9 +60,9 @@ def eigenvectors(T_sym,RHS=False):
Parameters Parameters
---------- ----------
T_sym : numpy.ndarray of shape (:,3,3) or (3,3) T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvectors are computed. Symmetric tensor of which the eigenvectors are computed.
RHS: bool, optional RHS: bool, optional
Enforce right-handed coordinate system. Default is False. Enforce right-handed coordinate system. Default is False.
""" """
(u,v) = np.linalg.eigh(symmetric(T_sym)) (u,v) = np.linalg.eigh(symmetric(T_sym))
@ -82,7 +82,7 @@ def left_stretch(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the left stretch is computed. Tensor of which the left stretch is computed.
""" """
return __polar_decomposition(T,'V')[0] return __polar_decomposition(T,'V')[0]
@ -95,7 +95,7 @@ def maximum_shear(T_sym):
Parameters Parameters
---------- ----------
T_sym : numpy.ndarray of shape (:,3,3) or (3,3) T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed. Symmetric tensor of which the maximum shear is computed.
""" """
w = eigenvalues(T_sym) w = eigenvalues(T_sym)
@ -110,7 +110,7 @@ def Mises_strain(epsilon):
Parameters Parameters
---------- ----------
epsilon : numpy.ndarray of shape (:,3,3) or (3,3) epsilon : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric strain tensor of which the von Mises equivalent is computed. Symmetric strain tensor of which the von Mises equivalent is computed.
""" """
return __Mises(epsilon,2.0/3.0) return __Mises(epsilon,2.0/3.0)
@ -123,7 +123,7 @@ def Mises_stress(sigma):
Parameters Parameters
---------- ----------
sigma : numpy.ndarray of shape (:,3,3) or (3,3) sigma : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric stress tensor of which the von Mises equivalent is computed. Symmetric stress tensor of which the von Mises equivalent is computed.
""" """
return __Mises(sigma,3.0/2.0) return __Mises(sigma,3.0/2.0)
@ -136,9 +136,9 @@ def PK2(P,F):
Parameters Parameters
---------- ----------
P : numpy.ndarray of shape (:,3,3) or (3,3) P : numpy.ndarray of shape (:,3,3) or (3,3)
1. Piola-Kirchhoff stress. First Piola-Kirchhoff stress.
F : numpy.ndarray of shape (:,3,3) or (3,3) F : numpy.ndarray of shape (:,3,3) or (3,3)
Deformation gradient. Deformation gradient.
""" """
if np.shape(F) == np.shape(P) == (3,3): if np.shape(F) == np.shape(P) == (3,3):
@ -155,7 +155,7 @@ def right_stretch(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the right stretch is computed. Tensor of which the right stretch is computed.
""" """
return __polar_decomposition(T,'U')[0] return __polar_decomposition(T,'U')[0]
@ -168,7 +168,7 @@ def rotational_part(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the rotational part is computed. Tensor of which the rotational part is computed.
""" """
return __polar_decomposition(T,'R')[0] return __polar_decomposition(T,'R')[0]
@ -181,9 +181,9 @@ def spherical_part(T,tensor=False):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the hydrostatic part is computed. Tensor of which the hydrostatic part is computed.
tensor : bool, optional tensor : bool, optional
Map spherical part onto identity tensor. Default is false Map spherical part onto identity tensor. Default is false
""" """
if T.shape == (3,3): if T.shape == (3,3):
@ -207,11 +207,11 @@ def strain_tensor(F,t,m):
Parameters Parameters
---------- ----------
F : numpy.ndarray of shape (:,3,3) or (3,3) F : numpy.ndarray of shape (:,3,3) or (3,3)
Deformation gradient. Deformation gradient.
t : {V, U} t : {V, U}
Type of the polar decomposition, V for left stretch tensor and U for right stretch tensor. Type of the polar decomposition, V for left stretch tensor and U for right stretch tensor.
m : float m : float
Order of the strain. Order of the strain.
""" """
F_ = F.reshape((1,3,3)) if F.shape == (3,3) else F F_ = F.reshape((1,3,3)) if F.shape == (3,3) else F
@ -242,7 +242,7 @@ def symmetric(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the symmetrized values are computed. Tensor of which the symmetrized values are computed.
""" """
return (T+transpose(T))*0.5 return (T+transpose(T))*0.5
@ -255,7 +255,7 @@ def transpose(T):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the transpose is computed. Tensor of which the transpose is computed.
""" """
return T.T if np.shape(T) == (3,3) else \ return T.T if np.shape(T) == (3,3) else \
@ -269,10 +269,10 @@ def __polar_decomposition(T,requested):
Parameters Parameters
---------- ----------
T : numpy.ndarray of shape (:,3,3) or (3,3) T : numpy.ndarray of shape (:,3,3) or (3,3)
Tensor of which the singular values are computed. Tensor of which the singular values are computed.
requested : iterable of str requested : iterable of str
Requested outputs: R for the rotation tensor, Requested outputs: R for the rotation tensor,
V for left stretch tensor and U for right stretch tensor. V for left stretch tensor and U for right stretch tensor.
""" """
u, s, vh = np.linalg.svd(T) u, s, vh = np.linalg.svd(T)
@ -297,9 +297,9 @@ def __Mises(T_sym,s):
Parameters Parameters
---------- ----------
T_sym : numpy.ndarray of shape (:,3,3) or (3,3) T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
Symmetric tensor of which the von Mises equivalent is computed. Symmetric tensor of which the von Mises equivalent is computed.
s : float s : float
Scaling factor (2/3 for strain, 3/2 for stress). Scaling factor (2/3 for strain, 3/2 for stress).
""" """
d = deviatoric_part(T_sym) d = deviatoric_part(T_sym)

View File

@ -50,23 +50,23 @@ class Orientation:
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.) Look into A. Heinz and P. Neumann 1991 for cases with differing sym.)
""" """
if self.lattice.symmetry != other.lattice.symmetry: if self.lattice.symmetry != other.lattice.symmetry:
raise NotImplementedError('disorientation between different symmetry classes not supported yet.') raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation
otherSymEqs = other.equivalentOrientations() otherSymEqs = other.equivalentOrientations()
for i,sA in enumerate(mySymEqs): for i,sA in enumerate(mySymEqs):
aInv = sA.rotation.inversed() aInv = sA.rotation.inversed()
for j,sB in enumerate(otherSymEqs): for j,sB in enumerate(otherSymEqs):
b = sB.rotation b = sB.rotation
r = b*aInv r = b*aInv
for k in range(2): for k in range(2):
r.inverse() r.inverse()
breaker = self.lattice.symmetry.inFZ(r.asRodrigues(vector=True)) \ breaker = self.lattice.symmetry.inFZ(r.asRodrigues(vector=True)) \
and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues(vector=True))) and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues(vector=True)))
if breaker: break if breaker: break
if breaker: break
if breaker: break if breaker: break
if breaker: break
return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ... return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ...
# ... own sym, other sym, # ... own sym, other sym,
@ -78,11 +78,11 @@ class Orientation:
def equivalentOrientations(self,members=[]): def equivalentOrientations(self,members=[]):
"""List of orientations which are symmetrically equivalent.""" """List of orientations which are symmetrically equivalent."""
try: try:
iter(members) # asking for (even empty) list of members? iter(members) # asking for (even empty) list of members?
except TypeError: except TypeError:
return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object
else: else:
return [self.__class__(q*self.rotation,self.lattice) \ return [self.__class__(q*self.rotation,self.lattice) \
for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations
def relatedOrientations(self,model): def relatedOrientations(self,model):
@ -94,7 +94,7 @@ class Orientation:
def reduced(self): def reduced(self):
"""Transform orientation to fall into fundamental zone according to symmetry.""" """Transform orientation to fall into fundamental zone according to symmetry."""
for me in self.equivalentOrientations(): for me in self.equivalentOrientations():
if self.lattice.symmetry.inFZ(me.rotation.asRodrigues(vector=True)): break if self.lattice.symmetry.inFZ(me.rotation.asRodrigues(vector=True)): break
return self.__class__(me.rotation,self.lattice) return self.__class__(me.rotation,self.lattice)
@ -105,11 +105,11 @@ class Orientation:
SST = True): SST = True):
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST).""" """Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)."""
if SST: # pole requested to be within SST if SST: # pole requested to be within SST
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
pole = o.rotation*axis # align crystal direction to axis pole = o.rotation*axis # align crystal direction to axis
if self.lattice.symmetry.inSST(pole,proper): break # found SST version if self.lattice.symmetry.inSST(pole,proper): break # found SST version
else: else:
pole = self.rotation*axis # align crystal direction to axis pole = self.rotation*axis # align crystal direction to axis
return (pole,i if SST else 0) return (pole,i if SST else 0)
@ -119,9 +119,9 @@ class Orientation:
color = np.zeros(3,'d') color = np.zeros(3,'d')
for o in self.equivalentOrientations(): for o in self.equivalentOrientations():
pole = o.rotation*axis # align crystal direction to axis pole = o.rotation*axis # align crystal direction to axis
inSST,color = self.lattice.symmetry.inSST(pole,color=True) inSST,color = self.lattice.symmetry.inSST(pole,color=True)
if inSST: break if inSST: break
return color return color
@ -131,15 +131,15 @@ class Orientation:
weights = []): weights = []):
"""Create orientation from average of list of orientations.""" """Create orientation from average of list of orientations."""
if not all(isinstance(item, Orientation) for item in orientations): if not all(isinstance(item, Orientation) for item in orientations):
raise TypeError("Only instances of Orientation can be averaged.") raise TypeError("Only instances of Orientation can be averaged.")
closest = [] closest = []
ref = orientations[0] ref = orientations[0]
for o in orientations: for o in orientations:
closest.append(o.equivalentOrientations( closest.append(o.equivalentOrientations(
ref.disorientation(o, ref.disorientation(o,
SST = False, # select (o[ther]'s) sym orientation SST = False, # select (o[ther]'s) sym orientation
symmetries = True)[2]).rotation) # with lowest misorientation symmetries = True)[2]).rotation) # with lowest misorientation
return Orientation(Rotation.fromAverage(closest,weights),ref.lattice) return Orientation(Rotation.fromAverage(closest,weights),ref.lattice)

View File

@ -287,7 +287,7 @@ class Table:
Parameters Parameters
---------- ----------
other : Table other : Table
Table to append Table to append.
""" """
if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns): if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns):
@ -305,7 +305,7 @@ class Table:
Parameters Parameters
---------- ----------
other : Table other : Table
Table to join Table to join.
""" """
if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]: if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]:

View File

@ -47,9 +47,9 @@ def srepr(arg,glue = '\n'):
Parameters Parameters
---------- ----------
arg : iterable arg : iterable
Items to join. Items to join.
glue : str, optional glue : str, optional
Defaults to \n. Defaults to \n.
""" """
if (not hasattr(arg, "strip") and if (not hasattr(arg, "strip") and
@ -66,9 +66,9 @@ def croak(what, newline = True):
Parameters Parameters
---------- ----------
what : str or iterable what : str or iterable
Content to be displayed Content to be displayed.
newline : bool, optional newline : bool, optional
Separate items of what by newline. Defaults to True. Separate items of what by newline. Defaults to True.
""" """
if not what: if not what:
@ -117,13 +117,13 @@ def execute(cmd,
Parameters Parameters
---------- ----------
cmd : str cmd : str
Command to be executed. Command to be executed.
streanIn :, optional streanIn :, optional
Input (via pipe) for executed process. Input (via pipe) for executed process.
wd : str, optional wd : str, optional
Working directory of process. Defaults to ./ . Working directory of process. Defaults to ./ .
env : env : dict, optional
Environment Environment for execution.
""" """
initialPath = os.getcwd() initialPath = os.getcwd()
@ -140,7 +140,7 @@ def execute(cmd,
error = error.decode('utf-8').replace('\x08','') error = error.decode('utf-8').replace('\x08','')
os.chdir(initialPath) os.chdir(initialPath)
if process.returncode != 0: if process.returncode != 0:
raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode)) raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
return out,error return out,error
@ -158,11 +158,11 @@ class extendableOption(Option):
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser): def take_action(self, action, dest, opt, value, values, parser):
if action == "extend": if action == "extend":
lvalue = value.split(",") lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue) values.ensure_value(dest, []).extend(lvalue)
else: else:
Option.take_action(self, action, dest, opt, value, values, parser) Option.take_action(self, action, dest, opt, value, values, parser)
class _ProgressBar: class _ProgressBar:
@ -179,11 +179,11 @@ class _ProgressBar:
Parameters Parameters
---------- ----------
total : int total : int
Total # of iterations. Total # of iterations.
prefix : str prefix : str
Prefix string. Prefix string.
bar_length : int bar_length : int
Character length of bar. Character length of bar.
""" """
self.total = total self.total = total
@ -224,13 +224,13 @@ def show_progress(iterable,N_iter=None,prefix='',bar_length=50):
Parameters Parameters
---------- ----------
iterable : iterable/function with yield statement iterable : iterable/function with yield statement
Iterable (or function with yield statement) to be decorated. Iterable (or function with yield statement) to be decorated.
N_iter : int N_iter : int
Total # of iterations. Needed if number of iterations can not be obtained as len(iterable). Total # of iterations. Needed if number of iterations can not be obtained as len(iterable).
prefix : str, optional. prefix : str, optional.
Prefix string. Prefix string.
bar_length : int, optional bar_length : int, optional
Character length of bar. Defaults to 50. Character length of bar. Defaults to 50.
""" """
status = _ProgressBar(N_iter if N_iter else len(iterable),prefix,bar_length) status = _ProgressBar(N_iter if N_iter else len(iterable),prefix,bar_length)
@ -268,7 +268,7 @@ class return_message():
Parameters Parameters
---------- ----------
message : str or list of str message : str or list of str
message for output to screen message for output to screen
""" """
self.message = message self.message = message