using burgers vector of tw/tr system seems to make more sense here

otherwise twinning will not work in many cases.
Matching number is only required for nucleation of tw/tr
This commit is contained in:
Martin Diehl 2021-07-24 11:43:14 +02:00
parent 931dc99557
commit b3f5e12232
2 changed files with 8 additions and 10 deletions

@ -1 +1 @@
Subproject commit c656b6f08489756c9ee6a6e1a62858c8b7836f10 Subproject commit 5049664c5cac3cc1571c7b61f3345f1ba8d627f6

View File

@ -758,19 +758,17 @@ module subroutine dislotwin_dependentState(T,ph,en)
dst%tau_pass(:,en) = prm%mu*prm%b_sl* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en))) dst%tau_pass(:,en) = prm%mu*prm%b_sl* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
!* threshold stress for growing twin/martensite !* threshold stress for growing twin/martensite
if(prm%sum_N_tw == prm%sum_N_sl) &
dst%tau_hat_tw(:,en) = Gamma/(3.0_pReal*prm%b_tw) & dst%tau_hat_tw(:,en) = Gamma/(3.0_pReal*prm%b_tw) &
+ 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_sl) ! slip Burgers here correct? + 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_tw)
if(prm%sum_N_tr == prm%sum_N_sl) &
dst%tau_hat_tr(:,en) = Gamma/(3.0_pReal*prm%b_tr) & dst%tau_hat_tr(:,en) = Gamma/(3.0_pReal*prm%b_tr) &
+ 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_sl) & ! slip Burgers here correct? + 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_tr) &
+ prm%h*prm%delta_G/(3.0_pReal*prm%b_tr) + prm%h*prm%delta_G/(3.0_pReal*prm%b_tr)
dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2.0_pReal dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2.0_pReal
dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2.0_pReal dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2.0_pReal
x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip and is the same for twin and trans x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip
dst%tau_r_tw(:,en) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0) dst%tau_r_tw(:,en) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip