parent
df42e9ed88
commit
b3a6aabdc5
|
@ -152,9 +152,9 @@ module plastic_dislotwin
|
|||
twinVolume, &
|
||||
martensiteVolume
|
||||
end type
|
||||
|
||||
type(tDislotwinState), allocatable, dimension(:), private :: &
|
||||
state, &
|
||||
state0, &
|
||||
dotState
|
||||
|
||||
public :: &
|
||||
|
@ -335,6 +335,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
prm%burgers_twin = math_expand(prm%burgers_twin,prm%Ntwin)
|
||||
|
||||
prm%xc_twin = config_phase(p)%getFloat('xc_twin')
|
||||
prm%Cthresholdtwin = config_phase(p)%getFloat('cthresholdtwin', defaultVal=0.0_pReal)
|
||||
|
||||
|
||||
prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1)
|
||||
|
@ -585,8 +586,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
! Determine total number of active slip or twin systems
|
||||
enddo sanityChecks
|
||||
|
||||
! ToDo: this should be stored somewhere else. Will work only for one instance now
|
||||
|
||||
! ToDo: this should be stored somewhere else. Works only for the whole instance!!
|
||||
allocate(tau_r_twin(prm%totalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(tau_r_trans(prm%totalNtrans, maxNinstance), source=0.0_pReal)
|
||||
|
||||
|
@ -600,7 +600,6 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
allocate(Ctrans3333(3,3,3,3,prm%totalNtrans), source=0.0_pReal)
|
||||
|
||||
allocate(state(maxNinstance))
|
||||
allocate(state0(maxNinstance))
|
||||
allocate(dotState(maxNinstance))
|
||||
|
||||
initializeInstances: do p = 1_pInt, size(phase_plasticity)
|
||||
|
@ -878,23 +877,26 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%invLambdaSlipTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%invLambdaTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%invLambdaSlipTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%invLambdaTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%mfp_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
state0(instance)%mfp_slip=>plasticState(p)%state0(startIndex:endIndex,:)
|
||||
MeanFreePathSlip0 = param(instance)%GrainSize/(1.0_pReal+invLambdaSlip0*param(instance)%GrainSize)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase)
|
||||
|
@ -973,7 +975,9 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
type(tParameters):: prm
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: ste
|
||||
|
||||
integer(pInt) :: instance,i, &
|
||||
ph, &
|
||||
of
|
||||
|
@ -983,25 +987,25 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
associate( prm => param(instance))
|
||||
associate( prm => param(instance), ste =>state(instance))
|
||||
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
sumf = sum(ste%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
sumftr = sum(ste%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(ste%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,prm%totalNtwin
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ state(instance)%twinFraction(i,of)*Ctwin66(1:6,1:6,i,instance)
|
||||
+ ste%twinFraction(i,of)*Ctwin66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
do i=1_pInt,prm%totalNtrans
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ (state(instance)%stressTransFraction(i,of) + state(instance)%strainTransFraction(i,of))*&
|
||||
+ (ste%stressTransFraction(i,of) + ste%strainTransFraction(i,of))*&
|
||||
Ctrans66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
end associate
|
||||
|
@ -1043,115 +1047,92 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Ntrans) :: ftransOverLamellarSize
|
||||
|
||||
type(tParameters):: prm
|
||||
type(tDislotwinState) :: ste
|
||||
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
associate(prm => param(instance))
|
||||
|
||||
associate(prm => param(instance), ste => state(instance))
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
sumf = sum(ste%twinFraction(1:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
sumftr = sum(ste%stressTransFraction(1:prm%totalNtrans,of)) + &
|
||||
sum(ste%strainTransFraction(1:prm%totalNtrans,of))
|
||||
|
||||
!* Stacking fault energy
|
||||
sfe = param(instance)%SFE_0K + param(instance)%dSFE_dT * Temperature
|
||||
sfe = prm%SFE_0K + prm%dSFE_dT * Temperature
|
||||
|
||||
!* rescaled twin volume fraction for topology
|
||||
|
||||
fOverStacksize = state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
|
||||
|
||||
!* rescaled trans volume fraction for topology
|
||||
ftransOverLamellarSize = &
|
||||
(state(instance)%stressTransFraction(:,of)+state(instance)%strainTransFraction(:,of))/&
|
||||
prm%lamellarsizePerTransSystem
|
||||
!* rescaled volume fraction for topology
|
||||
fOverStacksize = ste%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
|
||||
ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:prm%totalNslip) &
|
||||
state(instance)%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:prm%totalNslip,of)+state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
forestProjectionEdge(1:prm%totalNslip,s,instance)))/ &
|
||||
prm%CLambdaSlipPerSlipSystem(s)
|
||||
ste%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = 0.0_pReal
|
||||
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTwin(1:prm%totalNslip,1:prm%totalNtwin),fOverStacksize(1:prm%totalNtwin))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
ste%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (prm%totalNtwin > 0_pInt) &
|
||||
state(instance)%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
|
||||
matmul(prm%interaction_TwinTwin(1:prm%totalNtwin,1:prm%totalNtwin),fOverStacksize(1:prm%totalNtwin))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!ToDo: needed? if (prm%totalNtwin > 0_pInt) &
|
||||
ste%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
|
||||
matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
|
||||
|
||||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
state(instance)%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = 0.0_pReal
|
||||
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
state(instance)%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTrans(1:prm%totalNslip,1:prm%totalNtrans),ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
ste%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
|
||||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||||
if (prm%totalNtrans > 0_pInt) &
|
||||
state(instance)%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
|
||||
matmul(prm%interaction_TransTrans(1:prm%totalNtrans,1:prm%totalNtrans),ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
!ToDo: needed? if (prm%totalNtrans > 0_pInt) &
|
||||
|
||||
ste%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
|
||||
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,prm%totalNslip
|
||||
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is two simplified
|
||||
ste%mfp_slip(s,of) = &
|
||||
prm%GrainSize/(1.0_pReal+prm%GrainSize*&
|
||||
(state(instance)%invLambdaSlip(s,of) + state(instance)%invLambdaSlipTwin(s,of) + state(instance)%invLambdaSlipTrans(s,of)))
|
||||
(ste%invLambdaSlip(s,of) + ste%invLambdaSlipTwin(s,of) + ste%invLambdaSlipTrans(s,of)))
|
||||
else
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
ste%mfp_slip(s,of) = &
|
||||
prm%GrainSize/&
|
||||
(1.0_pReal+prm%GrainSize*(state(instance)%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
(1.0_pReal+prm%GrainSize*(ste%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
state(instance)%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/&
|
||||
(1.0_pReal+prm%GrainSize*state(instance)%invLambdaTwin(:,of))
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing martensite
|
||||
state(instance)%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/&
|
||||
(1.0_pReal+prm%GrainSize*state(instance)%invLambdaTrans(:,of))
|
||||
!* mean free path between 2 obstacles seen by a growing twin/martensite
|
||||
ste%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*ste%invLambdaTwin(:,of))
|
||||
ste%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*ste%invLambdaTrans(:,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:prm%totalNslip) &
|
||||
state(instance)%threshold_stress_slip(s,of) = &
|
||||
forall (s = 1_pInt:prm%totalNslip) ste%threshold_stress_slip(s,of) = &
|
||||
lattice_mu(ph)*prm%burgers_slip(s)*&
|
||||
sqrt(dot_product(state(instance)%rhoEdge(1_pInt:prm%totalNslip,of)+state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
sqrt(dot_product(ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
prm%interaction_SlipSlip(s,1:prm%totalNslip)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
state(instance)%threshold_stress_twin(:,of) = &
|
||||
prm%Cthresholdtwin* &
|
||||
(sfe/(3.0_pReal*prm%burgers_twin) &
|
||||
+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/&
|
||||
(param(instance)%L0_twin*prm%burgers_slip))
|
||||
|
||||
!* threshold stress for growing martensite
|
||||
|
||||
state(instance)%threshold_stress_trans(:,of) = &
|
||||
prm%Cthresholdtrans* &
|
||||
(sfe/(3.0_pReal*prm%burgers_trans) &
|
||||
+ 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
|
||||
(prm%L0_trans*prm%burgers_slip)&
|
||||
+ prm%transStackHeight*prm%deltaG/ &
|
||||
(3.0_pReal*prm%burgers_trans) &
|
||||
)
|
||||
!* final twin volume after growth
|
||||
state(instance)%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*state(instance)%mfp_twin(:,of)**2.0_pReal
|
||||
|
||||
!* final martensite volume after growth
|
||||
state(instance)%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*state(instance)%mfp_trans(:,of)**2.0_pReal
|
||||
!* threshold stress for growing twin/martensite
|
||||
ste%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||||
(sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ &
|
||||
(prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
|
||||
ste%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
|
||||
(sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
|
||||
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
|
||||
|
||||
! final volume after growth
|
||||
ste%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*ste%mfp_twin(:,of)**2.0_pReal
|
||||
ste%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*ste%mfp_trans(:,of)**2.0_pReal
|
||||
|
||||
!* equilibrium separation of partial dislocations (twin)
|
||||
x0 = lattice_mu(ph)*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||||
|
@ -1577,20 +1558,17 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Boltzmann ratio
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
plasticState(ph)%state(j, of)*prm%burgers_slip(j)*&
|
||||
prm%v0(j)
|
||||
DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||||
prm%q(f))*sign(1.0_pReal,tau_slip(j))
|
||||
endif
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/&
|
||||
(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
|
||||
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
param(instance)%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
EdgeDipMinDistance = param(instance)%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
if (dEq0(tau_slip(j))) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else
|
||||
|
@ -1632,12 +1610,10 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
endif
|
||||
endif
|
||||
!* Edge dislocation density rate of change
|
||||
dotState(instance)%rhoEdge(j,of) = &
|
||||
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
dotState(instance)%rhoEdgeDip(j,of) = &
|
||||
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
|
|
Loading…
Reference in New Issue