cthresholdtwin was not read in!

polished and commented
This commit is contained in:
Martin Diehl 2018-07-17 12:32:57 +02:00
parent df42e9ed88
commit b3a6aabdc5
1 changed files with 71 additions and 95 deletions

View File

@ -152,9 +152,9 @@ module plastic_dislotwin
twinVolume, & twinVolume, &
martensiteVolume martensiteVolume
end type end type
type(tDislotwinState), allocatable, dimension(:), private :: & type(tDislotwinState), allocatable, dimension(:), private :: &
state, & state, &
state0, &
dotState dotState
public :: & public :: &
@ -335,6 +335,7 @@ subroutine plastic_dislotwin_init(fileUnit)
prm%burgers_twin = math_expand(prm%burgers_twin,prm%Ntwin) prm%burgers_twin = math_expand(prm%burgers_twin,prm%Ntwin)
prm%xc_twin = config_phase(p)%getFloat('xc_twin') prm%xc_twin = config_phase(p)%getFloat('xc_twin')
prm%Cthresholdtwin = config_phase(p)%getFloat('cthresholdtwin', defaultVal=0.0_pReal)
prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1) prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1)
@ -585,8 +586,7 @@ subroutine plastic_dislotwin_init(fileUnit)
! Determine total number of active slip or twin systems ! Determine total number of active slip or twin systems
enddo sanityChecks enddo sanityChecks
! ToDo: this should be stored somewhere else. Will work only for one instance now ! ToDo: this should be stored somewhere else. Works only for the whole instance!!
allocate(tau_r_twin(prm%totalNtwin, maxNinstance), source=0.0_pReal) allocate(tau_r_twin(prm%totalNtwin, maxNinstance), source=0.0_pReal)
allocate(tau_r_trans(prm%totalNtrans, maxNinstance), source=0.0_pReal) allocate(tau_r_trans(prm%totalNtrans, maxNinstance), source=0.0_pReal)
@ -600,7 +600,6 @@ subroutine plastic_dislotwin_init(fileUnit)
allocate(Ctrans3333(3,3,3,3,prm%totalNtrans), source=0.0_pReal) allocate(Ctrans3333(3,3,3,3,prm%totalNtrans), source=0.0_pReal)
allocate(state(maxNinstance)) allocate(state(maxNinstance))
allocate(state0(maxNinstance))
allocate(dotState(maxNinstance)) allocate(dotState(maxNinstance))
initializeInstances: do p = 1_pInt, size(phase_plasticity) initializeInstances: do p = 1_pInt, size(phase_plasticity)
@ -878,23 +877,26 @@ subroutine plastic_dislotwin_init(fileUnit)
startIndex=endIndex+1 startIndex=endIndex+1
endIndex=endIndex+prm%totalNslip endIndex=endIndex+prm%totalNslip
state(instance)%invLambdaSlipTwin=>plasticState(p)%state(startIndex:endIndex,:) state(instance)%invLambdaSlipTwin=>plasticState(p)%state(startIndex:endIndex,:)
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
startIndex=endIndex+1 startIndex=endIndex+1
endIndex=endIndex+prm%totalNtwin endIndex=endIndex+prm%totalNtwin
state(instance)%invLambdaTwin=>plasticState(p)%state(startIndex:endIndex,:) state(instance)%invLambdaTwin=>plasticState(p)%state(startIndex:endIndex,:)
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
startIndex=endIndex+1 startIndex=endIndex+1
endIndex=endIndex+prm%totalNslip endIndex=endIndex+prm%totalNslip
state(instance)%invLambdaSlipTrans=>plasticState(p)%state(startIndex:endIndex,:) state(instance)%invLambdaSlipTrans=>plasticState(p)%state(startIndex:endIndex,:)
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
startIndex=endIndex+1 startIndex=endIndex+1
endIndex=endIndex+prm%totalNtrans endIndex=endIndex+prm%totalNtrans
state(instance)%invLambdaTrans=>plasticState(p)%state(startIndex:endIndex,:) state(instance)%invLambdaTrans=>plasticState(p)%state(startIndex:endIndex,:)
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
startIndex=endIndex+1 startIndex=endIndex+1
endIndex=endIndex+prm%totalNslip endIndex=endIndex+prm%totalNslip
state(instance)%mfp_slip=>plasticState(p)%state(startIndex:endIndex,:) state(instance)%mfp_slip=>plasticState(p)%state(startIndex:endIndex,:)
state0(instance)%mfp_slip=>plasticState(p)%state0(startIndex:endIndex,:)
MeanFreePathSlip0 = param(instance)%GrainSize/(1.0_pReal+invLambdaSlip0*param(instance)%GrainSize) MeanFreePathSlip0 = param(instance)%GrainSize/(1.0_pReal+invLambdaSlip0*param(instance)%GrainSize)
plasticState(p)%state0(startIndex:endIndex,:) = & plasticState(p)%state0(startIndex:endIndex,:) = &
spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase) spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase)
@ -973,7 +975,9 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
ipc, & !< component-ID of integration point ipc, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
type(tParameters):: prm type(tParameters) :: prm
type(tDislotwinState) :: ste
integer(pInt) :: instance,i, & integer(pInt) :: instance,i, &
ph, & ph, &
of of
@ -983,25 +987,25 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph) instance = phase_plasticityInstance(ph)
associate( prm => param(instance)) associate( prm => param(instance), ste =>state(instance))
!* Total twin volume fraction !* Total twin volume fraction
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0 sumf = sum(ste%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
!* Total transformed volume fraction !* Total transformed volume fraction
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & sumftr = sum(ste%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of)) sum(ste%strainTransFraction(1_pInt:prm%totalNtrans,of))
!* Homogenized elasticity matrix !* Homogenized elasticity matrix
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph) plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
do i=1_pInt,prm%totalNtwin do i=1_pInt,prm%totalNtwin
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
+ state(instance)%twinFraction(i,of)*Ctwin66(1:6,1:6,i,instance) + ste%twinFraction(i,of)*Ctwin66(1:6,1:6,i,instance)
enddo enddo
do i=1_pInt,prm%totalNtrans do i=1_pInt,prm%totalNtrans
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
+ (state(instance)%stressTransFraction(i,of) + state(instance)%strainTransFraction(i,of))*& + (ste%stressTransFraction(i,of) + ste%strainTransFraction(i,of))*&
Ctrans66(1:6,1:6,i,instance) Ctrans66(1:6,1:6,i,instance)
enddo enddo
end associate end associate
@ -1043,115 +1047,92 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Ntrans) :: ftransOverLamellarSize real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Ntrans) :: ftransOverLamellarSize
type(tParameters):: prm type(tParameters):: prm
type(tDislotwinState) :: ste
!* Shortened notation !* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph) instance = phase_plasticityInstance(ph)
associate(prm => param(instance))
!* Total twin volume fraction
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
!* Total transformed volume fraction associate(prm => param(instance), ste => state(instance))
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & !* Total twin volume fraction
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of)) sumf = sum(ste%twinFraction(1:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
sumftr = sum(ste%stressTransFraction(1:prm%totalNtrans,of)) + &
sum(ste%strainTransFraction(1:prm%totalNtrans,of))
!* Stacking fault energy !* Stacking fault energy
sfe = param(instance)%SFE_0K + param(instance)%dSFE_dT * Temperature sfe = prm%SFE_0K + prm%dSFE_dT * Temperature
!* rescaled twin volume fraction for topology !* rescaled volume fraction for topology
fOverStacksize = ste%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
fOverStacksize = state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem
!* rescaled trans volume fraction for topology
ftransOverLamellarSize = &
(state(instance)%stressTransFraction(:,of)+state(instance)%strainTransFraction(:,of))/&
prm%lamellarsizePerTransSystem
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
forall (s = 1_pInt:prm%totalNslip) & forall (s = 1_pInt:prm%totalNslip) &
state(instance)%invLambdaSlip(s,of) = & ste%invLambdaSlip(s,of) = &
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:prm%totalNslip,of)+state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of)),& sqrt(dot_product((ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
forestProjectionEdge(1:prm%totalNslip,s,instance)))/ & forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s)
prm%CLambdaSlipPerSlipSystem(s)
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
!$OMP CRITICAL (evilmatmul) !$OMP CRITICAL (evilmatmul)
state(instance)%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = 0.0_pReal
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) & if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
state(instance)%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = & ste%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
matmul(prm%interaction_SlipTwin(1:prm%totalNslip,1:prm%totalNtwin),fOverStacksize(1:prm%totalNtwin))/(1.0_pReal-sumf) matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf)
!$OMP END CRITICAL (evilmatmul)
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
!$OMP CRITICAL (evilmatmul)
if (prm%totalNtwin > 0_pInt) & !ToDo: needed? if (prm%totalNtwin > 0_pInt) &
state(instance)%invLambdaTwin(1_pInt:prm%totalNtwin,of) = & ste%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
matmul(prm%interaction_TwinTwin(1:prm%totalNtwin,1:prm%totalNtwin),fOverStacksize(1:prm%totalNtwin))/(1.0_pReal-sumf) matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf)
!$OMP END CRITICAL (evilmatmul)
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation !* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
state(instance)%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = 0.0_pReal
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) & if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
state(instance)%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = & ste%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
matmul(prm%interaction_SlipTrans(1:prm%totalNslip,1:prm%totalNtrans),ftransOverLamellarSize)/(1.0_pReal-sumftr) matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans) !* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
if (prm%totalNtrans > 0_pInt) & !ToDo: needed? if (prm%totalNtrans > 0_pInt) &
state(instance)%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
matmul(prm%interaction_TransTrans(1:prm%totalNtrans,1:prm%totalNtrans),ftransOverLamellarSize)/(1.0_pReal-sumftr) ste%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
!$OMP END CRITICAL (evilmatmul)
!* mean free path between 2 obstacles seen by a moving dislocation !* mean free path between 2 obstacles seen by a moving dislocation
do s = 1_pInt,prm%totalNslip do s = 1_pInt,prm%totalNslip
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is two simplified
state(instance)%mfp_slip(s,of) = & ste%mfp_slip(s,of) = &
prm%GrainSize/(1.0_pReal+prm%GrainSize*& prm%GrainSize/(1.0_pReal+prm%GrainSize*&
(state(instance)%invLambdaSlip(s,of) + state(instance)%invLambdaSlipTwin(s,of) + state(instance)%invLambdaSlipTrans(s,of))) (ste%invLambdaSlip(s,of) + ste%invLambdaSlipTwin(s,of) + ste%invLambdaSlipTrans(s,of)))
else else
state(instance)%mfp_slip(s,of) = & ste%mfp_slip(s,of) = &
prm%GrainSize/& prm%GrainSize/&
(1.0_pReal+prm%GrainSize*(state(instance)%invLambdaSlip(s,of))) !!!!!! correct? (1.0_pReal+prm%GrainSize*(ste%invLambdaSlip(s,of))) !!!!!! correct?
endif endif
enddo enddo
!* mean free path between 2 obstacles seen by a growing twin !* mean free path between 2 obstacles seen by a growing twin/martensite
state(instance)%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/& ste%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*ste%invLambdaTwin(:,of))
(1.0_pReal+prm%GrainSize*state(instance)%invLambdaTwin(:,of)) ste%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*ste%invLambdaTrans(:,of))
!* mean free path between 2 obstacles seen by a growing martensite
state(instance)%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/&
(1.0_pReal+prm%GrainSize*state(instance)%invLambdaTrans(:,of))
!* threshold stress for dislocation motion !* threshold stress for dislocation motion
forall (s = 1_pInt:prm%totalNslip) & forall (s = 1_pInt:prm%totalNslip) ste%threshold_stress_slip(s,of) = &
state(instance)%threshold_stress_slip(s,of) = &
lattice_mu(ph)*prm%burgers_slip(s)*& lattice_mu(ph)*prm%burgers_slip(s)*&
sqrt(dot_product(state(instance)%rhoEdge(1_pInt:prm%totalNslip,of)+state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of),& sqrt(dot_product(ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
prm%interaction_SlipSlip(s,1:prm%totalNslip))) prm%interaction_SlipSlip(s,1:prm%totalNslip)))
!* threshold stress for growing twin !* threshold stress for growing twin/martensite
state(instance)%threshold_stress_twin(:,of) = & ste%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
prm%Cthresholdtwin* & (sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ &
(sfe/(3.0_pReal*prm%burgers_twin) & (prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/& ste%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
(param(instance)%L0_twin*prm%burgers_slip)) (sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
!* threshold stress for growing martensite ! final volume after growth
ste%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*ste%mfp_twin(:,of)**2.0_pReal
state(instance)%threshold_stress_trans(:,of) = & ste%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*ste%mfp_trans(:,of)**2.0_pReal
prm%Cthresholdtrans* &
(sfe/(3.0_pReal*prm%burgers_trans) &
+ 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
(prm%L0_trans*prm%burgers_slip)&
+ prm%transStackHeight*prm%deltaG/ &
(3.0_pReal*prm%burgers_trans) &
)
!* final twin volume after growth
state(instance)%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*state(instance)%mfp_twin(:,of)**2.0_pReal
!* final martensite volume after growth
state(instance)%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*state(instance)%mfp_trans(:,of)**2.0_pReal
!* equilibrium separation of partial dislocations (twin) !* equilibrium separation of partial dislocations (twin)
x0 = lattice_mu(ph)*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph)) x0 = lattice_mu(ph)*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
@ -1577,20 +1558,17 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
DotGamma0 = & DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
plasticState(ph)%state(j, of)*prm%burgers_slip(j)*&
prm%v0(j)
!* Shear rates due to slip !* Shear rates due to slip
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** & gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
prm%q(f))*sign(1.0_pReal,tau_slip(j)) prm%q(f))*sign(1.0_pReal,tau_slip(j))
endif endif
!* Multiplication !* Multiplication
DotRhoMultiplication = abs(gdot_slip(j))/& DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
!* Dipole formation !* Dipole formation
EdgeDipMinDistance = & EdgeDipMinDistance = param(instance)%CEdgeDipMinDistance*prm%burgers_slip(j)
param(instance)%CEdgeDipMinDistance*prm%burgers_slip(j)
if (dEq0(tau_slip(j))) then if (dEq0(tau_slip(j))) then
DotRhoDipFormation = 0.0_pReal DotRhoDipFormation = 0.0_pReal
else else
@ -1632,12 +1610,10 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
endif endif
endif endif
!* Edge dislocation density rate of change !* Edge dislocation density rate of change
dotState(instance)%rhoEdge(j,of) = & dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
!* Edge dislocation dipole density rate of change !* Edge dislocation dipole density rate of change
dotState(instance)%rhoEdgeDip(j,of) = & dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
!* Dotstate for accumulated shear due to slip !* Dotstate for accumulated shear due to slip
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j)) dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))