polished langauge of help messages
This commit is contained in:
parent
0c2956e0e1
commit
b337575963
|
@ -481,7 +481,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
q : numpy.ndarray of shape (...,4)
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 ≥ 0.
|
||||
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0.
|
||||
|
||||
"""
|
||||
return self.quaternion.copy()
|
||||
|
@ -489,7 +489,7 @@ class Rotation:
|
|||
def as_Euler_angles(self,
|
||||
degrees = False):
|
||||
"""
|
||||
Represent as Bunge-Euler angles.
|
||||
Represent as Bunge–Euler angles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -499,12 +499,12 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
phi : numpy.ndarray of shape (...,3)
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2), φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]
|
||||
unless degrees == True: φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]
|
||||
Bunge–Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π])
|
||||
or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Cube orientation as Bunge-Euler angles.
|
||||
Cube orientation as Bunge–Euler angles.
|
||||
|
||||
>>> import damask
|
||||
>>> import numpy as np
|
||||
|
@ -520,7 +520,7 @@ class Rotation:
|
|||
degrees = False,
|
||||
pair = False):
|
||||
"""
|
||||
Represent as axis angle pair.
|
||||
Represent as axis–angle pair.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -531,19 +531,18 @@ class Rotation:
|
|||
|
||||
Returns
|
||||
-------
|
||||
axis_angle : numpy.ndarray of shape (...,4) unless pair == True:
|
||||
tuple containing numpy.ndarray of shapes (...,3) and (...)
|
||||
Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless degrees = True: ω ∈ [0,180].
|
||||
axis_angle : numpy.ndarray of shape (...,4) or tuple ((...,3), (...)) if pair == True
|
||||
Axis and angle (n_1, n_2, n_3, ω) with ǀnǀ = 1 and ω ∈ [0,π]
|
||||
or ω ∈ [0,180] if degrees == True.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Cube orientation as axis angle pair.
|
||||
Cube orientation as axis–angle pair.
|
||||
|
||||
>>> import damask
|
||||
>>> import numpy as np
|
||||
>>> damask.Rotation(np.array([1,0,0,0])).as_axis_angle()
|
||||
array([0., 0., 1., 0.])
|
||||
>>> damask.Rotation(np.array([1,0,0,0])).as_axis_angle(pair=True)
|
||||
(array([0., 0., 1.]), array(0.))
|
||||
|
||||
"""
|
||||
ax = Rotation._qu2ax(self.quaternion)
|
||||
|
@ -557,7 +556,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
R : numpy.ndarray of shape (...,3,3)
|
||||
Rotation matrix R, det(R) = 1, R.T∙R=I.
|
||||
Rotation matrix R with det(R) = 1, R.T ∙ R = I.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -576,25 +575,23 @@ class Rotation:
|
|||
def as_Rodrigues_vector(self,
|
||||
compact = False):
|
||||
"""
|
||||
Represent as Rodrigues-Frank vector with separated axis and angle argument.
|
||||
Represent as Rodrigues–Frank vector with separated axis and angle argument.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
compact : bool, optional
|
||||
Return as actual Rodrigues-Frank vector,
|
||||
Return three-component Rodrigues-Frank vector,
|
||||
i.e. axis and angle argument are not separated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rho : numpy.ndarray of shape (...,4) containing
|
||||
[n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless compact == True:
|
||||
numpy.ndarray of shape (...,3) containing
|
||||
tan(ω/2) [n_1, n_2, n_3], ω ∈ [0,π].
|
||||
rho : numpy.ndarray of shape (...,4) or (...,3) if compact == True
|
||||
Rodrigues–Frank vector [n_1, n_2, n_3, tan(ω/2)] with ǀnǀ = 1 and ω ∈ [0,π]
|
||||
or tan(ω/2) [n_1, n_2, n_3] with ω ∈ [0,π] if compact == True.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Cube orientation as 'real' Rodrigues-Frank vector.
|
||||
Cube orientation as three-component Rodrigues–Frank vector.
|
||||
|
||||
>>> import damask
|
||||
>>> import numpy as np
|
||||
|
@ -616,7 +613,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
|
||||
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -637,7 +634,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
x : numpy.ndarray of shape (...,3)
|
||||
Cubochoric vector: (x_1, x_2, x_3), max(x_i) < 1/2*π^(2/3).
|
||||
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -664,13 +661,12 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
q : numpy.ndarray of shape (...,4)
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
|
||||
ǀqǀ=1, q_0 ≥ 0.
|
||||
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0.
|
||||
accept_homomorph : boolean, optional
|
||||
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
|
||||
Defaults to False.
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
Sign convention. Defaults to -1.
|
||||
|
||||
"""
|
||||
qu = np.array(q,dtype=float)
|
||||
|
@ -694,15 +690,15 @@ class Rotation:
|
|||
def from_Euler_angles(phi,
|
||||
degrees = False):
|
||||
"""
|
||||
Initialize from Bunge-Euler angles.
|
||||
Initialize from Bunge–Euler angles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
phi : numpy.ndarray of shape (...,3)
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2), φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]
|
||||
unless degrees == True: φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360].
|
||||
Bunge–Euler angles ()φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π])
|
||||
or ()φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.
|
||||
degrees : boolean, optional
|
||||
Bunge-Euler angles are given in degrees. Defaults to False.
|
||||
Bunge–Euler angles are given in degrees. Defaults to False.
|
||||
|
||||
"""
|
||||
eu = np.array(phi,dtype=float)
|
||||
|
@ -726,14 +722,14 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
axis_angle : numpy.ndarray of shape (...,4)
|
||||
Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless degrees = True: ω ∈ [0,180].
|
||||
Axis and angle (n_1, n_2, n_3, ω) with ǀnǀ = 1 and ω ∈ [0,π]
|
||||
or ω ∈ [0,180] if degrees == True.
|
||||
degrees : boolean, optional
|
||||
Angle ω is given in degrees. Defaults to False.
|
||||
normalize: boolean, optional
|
||||
Allow ǀnǀ ≠ 1. Defaults to False.
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
Sign convention. Defaults to -1.
|
||||
|
||||
"""
|
||||
ax = np.array(axis_angle,dtype=float)
|
||||
|
@ -746,10 +742,10 @@ class Rotation:
|
|||
if degrees: ax[..., 3] = np.radians(ax[...,3])
|
||||
if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1,keepdims=True)
|
||||
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].')
|
||||
raise ValueError('Axis–angle rotation angle outside of [0..π].')
|
||||
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
|
||||
print(np.linalg.norm(ax[...,0:3],axis=-1))
|
||||
raise ValueError('Axis angle rotation axis is not of unit length.')
|
||||
raise ValueError('Axis–angle rotation axis is not of unit length.')
|
||||
|
||||
return Rotation(Rotation._ax2qu(ax))
|
||||
|
||||
|
@ -797,7 +793,7 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
R : numpy.ndarray of shape (...,3,3)
|
||||
Rotation matrix: det(R) = 1, R.T∙R=I.
|
||||
Rotation matrix with det(R) = 1, R.T ∙ R = I.
|
||||
|
||||
"""
|
||||
return Rotation.from_basis(R)
|
||||
|
@ -836,16 +832,16 @@ class Rotation:
|
|||
normalize = False,
|
||||
P = -1):
|
||||
"""
|
||||
Initialize from Rodrigues-Frank vector (angle separated from axis).
|
||||
Initialize from Rodrigues–Frank vector (angle separated from axis).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rho : numpy.ndarray of shape (...,4)
|
||||
Rodrigues-Frank vector. (n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω ∈ [0,π].
|
||||
Rodrigues–Frank vector (n_1, n_2, n_3, tan(ω/2)) with ǀnǀ = 1 and ω ∈ [0,π].
|
||||
normalize : boolean, optional
|
||||
Allow ǀnǀ ≠ 1. Defaults to False.
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
Sign convention. Defaults to -1.
|
||||
|
||||
"""
|
||||
ro = np.array(rho,dtype=float)
|
||||
|
@ -857,7 +853,7 @@ class Rotation:
|
|||
ro[...,0:3] *= -P
|
||||
if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True)
|
||||
if np.any(ro[...,3] < 0.0):
|
||||
raise ValueError('Rodrigues vector rotation angle not positive.')
|
||||
raise ValueError('Rodrigues vector rotation angle is negative.')
|
||||
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
|
||||
raise ValueError('Rodrigues vector rotation axis is not of unit length.')
|
||||
|
||||
|
@ -872,9 +868,9 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
|
||||
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
Sign convention. Defaults to -1.
|
||||
|
||||
"""
|
||||
ho = np.array(h,dtype=float)
|
||||
|
@ -899,9 +895,9 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
x : numpy.ndarray of shape (...,3)
|
||||
Cubochoric vector: (x_1, x_2, x_3), max(x_i) < 1/2*π^(2/3).
|
||||
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
Sign convention. Defaults to -1.
|
||||
|
||||
"""
|
||||
cu = np.array(x,dtype=float)
|
||||
|
@ -922,18 +918,17 @@ class Rotation:
|
|||
def from_random(shape = None,
|
||||
rng_seed = None):
|
||||
"""
|
||||
Draw random rotation.
|
||||
Initialize with random rotation.
|
||||
|
||||
Rotations are uniformly distributed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : tuple of ints, optional
|
||||
Shape of the sample. Defaults to None which gives a
|
||||
single rotation
|
||||
Shape of the sample. Defaults to None, which gives a single rotation.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
A seed to initialize the BitGenerator. Defaults to None.
|
||||
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
||||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
||||
"""
|
||||
rng = np.random.default_rng(rng_seed)
|
||||
|
@ -958,25 +953,25 @@ class Rotation:
|
|||
rng_seed = None,
|
||||
**kwargs):
|
||||
"""
|
||||
Sample discrete values from a binned ODF.
|
||||
Sample discrete values from a binned orientation distribution function (ODF).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
weights : numpy.ndarray of shape (n)
|
||||
Texture intensity values (probability density or volume fraction) at Euler grid points.
|
||||
Texture intensity values (probability density or volume fraction) at Euler space grid points.
|
||||
phi : numpy.ndarray of shape (n,3)
|
||||
Grid coordinates in Euler space at which weights are defined.
|
||||
N : integer, optional
|
||||
Number of discrete orientations to be sampled from the given ODF.
|
||||
Defaults to 500.
|
||||
degrees : boolean, optional
|
||||
Euler grid values are in degrees. Defaults to True.
|
||||
Euler space grid coordinates are in degrees. Defaults to True.
|
||||
fractions : boolean, optional
|
||||
ODF values correspond to volume fractions, not probability density.
|
||||
ODF values correspond to volume fractions, not probability densities.
|
||||
Defaults to True.
|
||||
rng_seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
|
||||
will be pulled from the OS.
|
||||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -1024,12 +1019,12 @@ class Rotation:
|
|||
sigma : float
|
||||
Standard deviation of (Gaussian) misorientation distribution.
|
||||
N : int, optional
|
||||
Number of samples, defaults to 500.
|
||||
Number of samples. Defaults to 500.
|
||||
degrees : boolean, optional
|
||||
sigma is given in degrees. Defaults to True.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
|
||||
will be pulled from the OS.
|
||||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
||||
"""
|
||||
rng = np.random.default_rng(rng_seed)
|
||||
|
@ -1063,12 +1058,12 @@ class Rotation:
|
|||
Standard deviation of (Gaussian) misorientation distribution.
|
||||
Defaults to 0.
|
||||
N : int, optional
|
||||
Number of samples, defaults to 500.
|
||||
Number of samples. Defaults to 500.
|
||||
degrees : boolean, optional
|
||||
sigma, alpha, and beta are given in degrees.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
|
||||
will be pulled from the OS.
|
||||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
||||
"""
|
||||
rng = np.random.default_rng(rng_seed)
|
||||
|
@ -1171,9 +1166,9 @@ class Rotation:
|
|||
@staticmethod
|
||||
def _qu2ax(qu):
|
||||
"""
|
||||
Quaternion to axis angle pair.
|
||||
Quaternion to axis–angle pair.
|
||||
|
||||
Modified version of the original formulation, should be numerically more stable
|
||||
Modified version of the original formulation, should be numerically more stable.
|
||||
"""
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2)
|
||||
|
@ -1186,7 +1181,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _qu2ro(qu):
|
||||
"""Quaternion to Rodrigues-Frank vector."""
|
||||
"""Quaternion to Rodrigues–Frank vector."""
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True)
|
||||
ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.0e-12,qu.shape),
|
||||
|
@ -1260,7 +1255,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _om2eu(om):
|
||||
"""Rotation matrix to Bunge-Euler angles."""
|
||||
"""Rotation matrix to Bunge–Euler angles."""
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
zeta = 1.0/np.sqrt(1.0-om[...,2,2:3]**2)
|
||||
eu = np.where(np.isclose(np.abs(om[...,2,2:3]),1.0,0.0),
|
||||
|
@ -1279,7 +1274,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _om2ax(om):
|
||||
"""Rotation matrix to axis angle pair."""
|
||||
"""Rotation matrix to axis–angle pair."""
|
||||
diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2],
|
||||
om[...,2,0:1]-om[...,0,2:3],
|
||||
om[...,0,1:2]-om[...,1,0:1]
|
||||
|
@ -1300,7 +1295,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _om2ro(om):
|
||||
"""Rotation matrix to Rodrigues-Frank vector."""
|
||||
"""Rotation matrix to Rodrigues–Frank vector."""
|
||||
return Rotation._eu2ro(Rotation._om2eu(om))
|
||||
|
||||
@staticmethod
|
||||
|
@ -1317,7 +1312,7 @@ class Rotation:
|
|||
#---------- Bunge-Euler angles ----------
|
||||
@staticmethod
|
||||
def _eu2qu(eu):
|
||||
"""Bunge-Euler angles to quaternion."""
|
||||
"""Bunge–Euler angles to quaternion."""
|
||||
ee = 0.5*eu
|
||||
cPhi = np.cos(ee[...,1:2])
|
||||
sPhi = np.sin(ee[...,1:2])
|
||||
|
@ -1330,7 +1325,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _eu2om(eu):
|
||||
"""Bunge-Euler angles to rotation matrix."""
|
||||
"""Bunge–Euler angles to rotation matrix."""
|
||||
c = np.cos(eu)
|
||||
s = np.sin(eu)
|
||||
om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2],
|
||||
|
@ -1348,7 +1343,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _eu2ax(eu):
|
||||
"""Bunge-Euler angles to axis angle pair."""
|
||||
"""Bunge–Euler angles to axis–angle pair."""
|
||||
t = np.tan(eu[...,1:2]*0.5)
|
||||
sigma = 0.5*(eu[...,0:1]+eu[...,2:3])
|
||||
delta = 0.5*(eu[...,0:1]-eu[...,2:3])
|
||||
|
@ -1367,7 +1362,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _eu2ro(eu):
|
||||
"""Bunge-Euler angles to Rodrigues-Frank vector."""
|
||||
"""Bunge–Euler angles to Rodrigues–Frank vector."""
|
||||
ax = Rotation._eu2ax(eu)
|
||||
ro = np.block([ax[...,:3],np.tan(ax[...,3:4]*.5)])
|
||||
ro[ax[...,3]>=np.pi,3] = np.inf
|
||||
|
@ -1376,19 +1371,19 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _eu2ho(eu):
|
||||
"""Bunge-Euler angles to homochoric vector."""
|
||||
"""Bunge–Euler angles to homochoric vector."""
|
||||
return Rotation._ax2ho(Rotation._eu2ax(eu))
|
||||
|
||||
@staticmethod
|
||||
def _eu2cu(eu):
|
||||
"""Bunge-Euler angles to cubochoric vector."""
|
||||
"""Bunge–Euler angles to cubochoric vector."""
|
||||
return Rotation._ho2cu(Rotation._eu2ho(eu))
|
||||
|
||||
|
||||
#---------- Axis angle pair ----------
|
||||
@staticmethod
|
||||
def _ax2qu(ax):
|
||||
"""Axis angle pair to quaternion."""
|
||||
"""Axis–angle pair to quaternion."""
|
||||
c = np.cos(ax[...,3:4]*.5)
|
||||
s = np.sin(ax[...,3:4]*.5)
|
||||
qu = np.where(np.abs(ax[...,3:4])<1.e-6,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s]))
|
||||
|
@ -1396,7 +1391,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ax2om(ax):
|
||||
"""Axis angle pair to rotation matrix."""
|
||||
"""Axis-angle pair to rotation matrix."""
|
||||
c = np.cos(ax[...,3:4])
|
||||
s = np.sin(ax[...,3:4])
|
||||
omc = 1. -c
|
||||
|
@ -1413,12 +1408,12 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ax2eu(ax):
|
||||
"""Rotation matrix to Bunge Euler angles."""
|
||||
"""Rotation matrix to Bunge–Euler angles."""
|
||||
return Rotation._om2eu(Rotation._ax2om(ax))
|
||||
|
||||
@staticmethod
|
||||
def _ax2ro(ax):
|
||||
"""Axis angle pair to Rodrigues-Frank vector."""
|
||||
"""Axis–angle pair to Rodrigues–Frank vector."""
|
||||
ro = np.block([ax[...,:3],
|
||||
np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
|
||||
np.inf,
|
||||
|
@ -1429,36 +1424,36 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ax2ho(ax):
|
||||
"""Axis angle pair to homochoric vector."""
|
||||
"""Axis–angle pair to homochoric vector."""
|
||||
f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
|
||||
ho = ax[...,:3] * f
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def _ax2cu(ax):
|
||||
"""Axis angle pair to cubochoric vector."""
|
||||
"""Axis–angle pair to cubochoric vector."""
|
||||
return Rotation._ho2cu(Rotation._ax2ho(ax))
|
||||
|
||||
|
||||
#---------- Rodrigues-Frank vector ----------
|
||||
@staticmethod
|
||||
def _ro2qu(ro):
|
||||
"""Rodrigues-Frank vector to quaternion."""
|
||||
"""Rodrigues–Frank vector to quaternion."""
|
||||
return Rotation._ax2qu(Rotation._ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def _ro2om(ro):
|
||||
"""Rodgrigues-Frank vector to rotation matrix."""
|
||||
"""Rodgrigues–Frank vector to rotation matrix."""
|
||||
return Rotation._ax2om(Rotation._ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def _ro2eu(ro):
|
||||
"""Rodrigues-Frank vector to Bunge-Euler angles."""
|
||||
"""Rodrigues–Frank vector to Bunge–Euler angles."""
|
||||
return Rotation._om2eu(Rotation._ro2om(ro))
|
||||
|
||||
@staticmethod
|
||||
def _ro2ax(ro):
|
||||
"""Rodrigues-Frank vector to axis angle pair."""
|
||||
"""Rodrigues–Frank vector to axis–angle pair."""
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
ax = np.where(np.isfinite(ro[...,3:4]),
|
||||
np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]),
|
||||
|
@ -1468,7 +1463,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ro2ho(ro):
|
||||
"""Rodrigues-Frank vector to homochoric vector."""
|
||||
"""Rodrigues–Frank vector to homochoric vector."""
|
||||
f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
|
||||
ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-8,ro[...,0:3].shape),
|
||||
np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
|
||||
|
@ -1476,7 +1471,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ro2cu(ro):
|
||||
"""Rodrigues-Frank vector to cubochoric vector."""
|
||||
"""Rodrigues–Frank vector to cubochoric vector."""
|
||||
return Rotation._ho2cu(Rotation._ro2ho(ro))
|
||||
|
||||
|
||||
|
@ -1493,12 +1488,12 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ho2eu(ho):
|
||||
"""Homochoric vector to Bunge-Euler angles."""
|
||||
"""Homochoric vector to Bunge–Euler angles."""
|
||||
return Rotation._ax2eu(Rotation._ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def _ho2ax(ho):
|
||||
"""Homochoric vector to axis angle pair."""
|
||||
"""Homochoric vector to axis–angle pair."""
|
||||
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
||||
-0.024999992127593126, -0.003928701544781374,
|
||||
-0.0008152701535450438, -0.0002009500426119712,
|
||||
|
@ -1521,7 +1516,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _ho2ro(ho):
|
||||
"""Axis angle pair to Rodrigues-Frank vector."""
|
||||
"""Axis–angle pair to Rodrigues–Frank vector."""
|
||||
return Rotation._ax2ro(Rotation._ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
|
@ -1576,17 +1571,17 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def _cu2eu(cu):
|
||||
"""Cubochoric vector to Bunge-Euler angles."""
|
||||
"""Cubochoric vector to Bunge–Euler angles."""
|
||||
return Rotation._ho2eu(Rotation._cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def _cu2ax(cu):
|
||||
"""Cubochoric vector to axis angle pair."""
|
||||
"""Cubochoric vector to axis–angle pair."""
|
||||
return Rotation._ho2ax(Rotation._cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def _cu2ro(cu):
|
||||
"""Cubochoric vector to Rodrigues-Frank vector."""
|
||||
"""Cubochoric vector to Rodrigues–Frank vector."""
|
||||
return Rotation._ho2ro(Rotation._cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
|
@ -1642,7 +1637,7 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball or
|
||||
Coordinates of a point on a uniform refinable grid on a ball or
|
||||
in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
|
|
Loading…
Reference in New Issue