adopted ASCIItable class and checked correctness of results.

This commit is contained in:
Philip Eisenlohr 2012-01-19 20:41:56 +00:00
parent acf7c86531
commit b134ec7a39
1 changed files with 62 additions and 89 deletions

View File

@ -29,11 +29,8 @@ def location(idx,res):
def index(location,res):
return ( location[0] % res[0] + \
( location[1] % res[1]) * res[0] + \
(location[2] % res[2]) * res[0] * res[1] )
( location[2] % res[2]) * res[1] * res[0] )
def prefixMultiply(what,len):
return {True: ['%i_%s'%(i+1,what) for i in range(len)],
False:[what]}[len>1]
# --------------------------------------------------------------------
@ -87,121 +84,97 @@ if options.tensor != None: datainfo['tensor']['label'] += options.tensor
files = []
if filenames == []:
files.append({'name':'STDIN', 'handle':sys.stdin})
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'handle':open(name)})
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
# ------------------------------------------ loop over input files ---------------------------------------
for file in files:
print file['name']
if file['name'] != 'STDIN': print file['name']
content = file['handle'].readlines()
file['handle'].close()
# get labels by either read the first row, or - if keyword header is present - the last line of the header
headerlines = 1
m = re.search('(\d+)\s*head', content[0].lower())
if m:
headerlines = int(m.group(1))
passOn = content[1:headerlines]
headers = content[headerlines].split()
data = content[headerlines+1:]
regexp = re.compile('1_\d+_')
for i,l in enumerate(headers):
if regexp.match(l):
headers[i] = l[2:]
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
active = {}
column = {}
values = {}
curl_field ={}
curl = {}
head = []
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
if key not in headers:
print 'column %s not found...'%key
if key not in table.labels:
sys.stderr.write('column %s not found...\n'%key)
else:
if datatype not in active: active[datatype] = []
if datatype not in column: column[datatype] = {}
if datatype not in values: values[datatype] = {}
if datatype not in curl_field: curl_field[datatype] = {}
if datatype not in curl: curl[datatype] = {}
active[datatype].append(label)
column[datatype][label] = headers.index(key)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
options.res[0]*options.res[1]*options.res[2])]).\
reshape((options.res[0],options.res[1],options.res[2],\
3,datainfo[datatype]['len']//3))
datainfo[datatype]['len']//3,3))
curl[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
options.res[0]*options.res[1]*options.res[2])]).\
reshape((options.res[0],options.res[1],options.res[2],\
datainfo[datatype]['len']//3,3))
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
head += prefixMultiply('curlfft(%s)'%(label),datainfo[datatype]['len'])
# ------------------------------------------ assemble header ---------------------------------------
output = '%i\theader'%(headerlines+1) + '\n' + \
''.join(passOn) + \
string.replace('$Id$','\n','\\n')+ '\t' + \
' '.join(sys.argv[1:]) + '\n' + \
'\t'.join(headers + head) + '\n' # build extended header
table.head_write()
# ------------------------------------------ read value field ---------------------------------------
idx = 0
for line in data:
items = line.split()[:len(headers)]
if len(items) < len(headers): # skip too short lines (probably comments or invalid)
continue
locSkip = location(idx,resSkip)
if ( locSkip[0] < options.res[0]
and locSkip[1] < options.res[1]
and locSkip[2] < options.res[2] ): # only take values that are not periodic images
for datatype,labels in active.items():
for label in labels:
values[datatype][label][locSkip[0]][locSkip[1]][locSkip[2]]\
= numpy.reshape(items[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']],(3,datainfo[datatype]['len']//3))
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
idx += 1
else:
for datatype,labels in active.items():
for label in labels:
if label not in curl_field[datatype]: curl_field[datatype][label] = {}
curl_field[datatype][label] = numpy.array([0.0 for i in range((datainfo[datatype]['len'])*\
options.res[0]*options.res[1]*options.res[2])]).\
reshape(options.res[0],options.res[1],options.res[2],\
3,datainfo[datatype]['len']//3)
curl_field[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
values[datatype][label][x,y,z] = numpy.array(
map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(datainfo[datatype]['len']//3,3)
# ------------------------------------------ process value field ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
curl[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
# ------------------------------------------ process data ---------------------------------------
table.data_rewind()
idx = 0
for line in data:
items = line.split()[:len(headers)]
if len(items) < len(headers):
continue
output += '\t'.join(items)
for datatype,labels in active.items():
for label in labels:
for i in range(3):
for j in range(datainfo[datatype]['len']//3):
output += '\t%f'%curl_field[datatype][label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]][i][j]
output += '\n'
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
idx += 1
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
if file['name'] == 'STDIN':
print output
else:
file['handle'] = open(file['name']+'_tmp','w')
try:
file['handle'].write(output)
file['handle'].close()
os.rename(file['name']+'_tmp',file['name'])
except:
print 'error during writing',file['name']+'_tmp'
table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
if file['name'] != 'STDIN':
file['output'].close # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new