adopted ASCIItable class and checked correctness of results.
This commit is contained in:
parent
acf7c86531
commit
b134ec7a39
|
@ -29,11 +29,8 @@ def location(idx,res):
|
||||||
def index(location,res):
|
def index(location,res):
|
||||||
return ( location[0] % res[0] + \
|
return ( location[0] % res[0] + \
|
||||||
( location[1] % res[1]) * res[0] + \
|
( location[1] % res[1]) * res[0] + \
|
||||||
(location[2] % res[2]) * res[0] * res[1] )
|
( location[2] % res[2]) * res[1] * res[0] )
|
||||||
|
|
||||||
def prefixMultiply(what,len):
|
|
||||||
return {True: ['%i_%s'%(i+1,what) for i in range(len)],
|
|
||||||
False:[what]}[len>1]
|
|
||||||
|
|
||||||
|
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
@ -87,121 +84,97 @@ if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
||||||
|
|
||||||
files = []
|
files = []
|
||||||
if filenames == []:
|
if filenames == []:
|
||||||
files.append({'name':'STDIN', 'handle':sys.stdin})
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
||||||
else:
|
else:
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
if os.path.exists(name):
|
if os.path.exists(name):
|
||||||
files.append({'name':name, 'handle':open(name)})
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ loop over input files ---------------------------------------
|
# ------------------------------------------ loop over input files ---------------------------------------
|
||||||
|
|
||||||
for file in files:
|
for file in files:
|
||||||
print file['name']
|
if file['name'] != 'STDIN': print file['name']
|
||||||
|
|
||||||
content = file['handle'].readlines()
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||||
file['handle'].close()
|
table.head_read() # read ASCII header info
|
||||||
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||||
# get labels by either read the first row, or - if keyword header is present - the last line of the header
|
'\t' + ' '.join(sys.argv[1:]))
|
||||||
|
|
||||||
headerlines = 1
|
|
||||||
m = re.search('(\d+)\s*head', content[0].lower())
|
|
||||||
if m:
|
|
||||||
headerlines = int(m.group(1))
|
|
||||||
passOn = content[1:headerlines]
|
|
||||||
headers = content[headerlines].split()
|
|
||||||
data = content[headerlines+1:]
|
|
||||||
|
|
||||||
regexp = re.compile('1_\d+_')
|
|
||||||
for i,l in enumerate(headers):
|
|
||||||
if regexp.match(l):
|
|
||||||
headers[i] = l[2:]
|
|
||||||
|
|
||||||
active = {}
|
active = {}
|
||||||
column = {}
|
column = {}
|
||||||
values = {}
|
values = {}
|
||||||
curl_field ={}
|
curl = {}
|
||||||
|
|
||||||
head = []
|
head = []
|
||||||
|
|
||||||
for datatype,info in datainfo.items():
|
for datatype,info in datainfo.items():
|
||||||
for label in info['label']:
|
for label in info['label']:
|
||||||
key = {True :'1_%s',
|
key = {True :'1_%s',
|
||||||
False:'%s' }[info['len']>1]%label
|
False:'%s' }[info['len']>1]%label
|
||||||
if key not in headers:
|
if key not in table.labels:
|
||||||
print 'column %s not found...'%key
|
sys.stderr.write('column %s not found...\n'%key)
|
||||||
else:
|
else:
|
||||||
if datatype not in active: active[datatype] = []
|
if datatype not in active: active[datatype] = []
|
||||||
if datatype not in column: column[datatype] = {}
|
if datatype not in column: column[datatype] = {}
|
||||||
if datatype not in values: values[datatype] = {}
|
if datatype not in values: values[datatype] = {}
|
||||||
if datatype not in curl_field: curl_field[datatype] = {}
|
if datatype not in curl: curl[datatype] = {}
|
||||||
active[datatype].append(label)
|
active[datatype].append(label)
|
||||||
column[datatype][label] = headers.index(key)
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||||
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
||||||
options.res[0]*options.res[1]*options.res[2])]).\
|
options.res[0]*options.res[1]*options.res[2])]).\
|
||||||
reshape((options.res[0],options.res[1],options.res[2],\
|
reshape((options.res[0],options.res[1],options.res[2],\
|
||||||
3,datainfo[datatype]['len']//3))
|
datainfo[datatype]['len']//3,3))
|
||||||
|
curl[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
||||||
|
options.res[0]*options.res[1]*options.res[2])]).\
|
||||||
|
reshape((options.res[0],options.res[1],options.res[2],\
|
||||||
|
datainfo[datatype]['len']//3,3))
|
||||||
|
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
|
||||||
|
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
|
||||||
|
|
||||||
head += prefixMultiply('curlfft(%s)'%(label),datainfo[datatype]['len'])
|
|
||||||
|
|
||||||
# ------------------------------------------ assemble header ---------------------------------------
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
|
|
||||||
output = '%i\theader'%(headerlines+1) + '\n' + \
|
table.head_write()
|
||||||
''.join(passOn) + \
|
|
||||||
string.replace('$Id$','\n','\\n')+ '\t' + \
|
|
||||||
' '.join(sys.argv[1:]) + '\n' + \
|
|
||||||
'\t'.join(headers + head) + '\n' # build extended header
|
|
||||||
|
|
||||||
# ------------------------------------------ read value field ---------------------------------------
|
# ------------------------------------------ read value field ---------------------------------------
|
||||||
|
|
||||||
idx = 0
|
idx = 0
|
||||||
for line in data:
|
while table.data_read(): # read next data line of ASCII table
|
||||||
items = line.split()[:len(headers)]
|
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||||
if len(items) < len(headers): # skip too short lines (probably comments or invalid)
|
|
||||||
continue
|
|
||||||
locSkip = location(idx,resSkip)
|
|
||||||
if ( locSkip[0] < options.res[0]
|
|
||||||
and locSkip[1] < options.res[1]
|
|
||||||
and locSkip[2] < options.res[2] ): # only take values that are not periodic images
|
|
||||||
for datatype,labels in active.items():
|
|
||||||
for label in labels:
|
|
||||||
values[datatype][label][locSkip[0]][locSkip[1]][locSkip[2]]\
|
|
||||||
= numpy.reshape(items[column[datatype][label]:
|
|
||||||
column[datatype][label]+datainfo[datatype]['len']],(3,datainfo[datatype]['len']//3))
|
|
||||||
idx += 1
|
idx += 1
|
||||||
else:
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
for datatype,labels in active.items():
|
for label in labels: # loop over all requested curls
|
||||||
for label in labels:
|
values[datatype][label][x,y,z] = numpy.array(
|
||||||
if label not in curl_field[datatype]: curl_field[datatype][label] = {}
|
map(float,table.data[column[datatype][label]:
|
||||||
curl_field[datatype][label] = numpy.array([0.0 for i in range((datainfo[datatype]['len'])*\
|
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(datainfo[datatype]['len']//3,3)
|
||||||
options.res[0]*options.res[1]*options.res[2])]).\
|
|
||||||
reshape(options.res[0],options.res[1],options.res[2],\
|
# ------------------------------------------ process value field ---------------------------------------
|
||||||
3,datainfo[datatype]['len']//3)
|
|
||||||
curl_field[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
|
for label in labels: # loop over all requested curls
|
||||||
|
curl[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
|
||||||
|
|
||||||
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
|
|
||||||
|
table.data_rewind()
|
||||||
idx = 0
|
idx = 0
|
||||||
for line in data:
|
while table.data_read(): # read next data line of ASCII table
|
||||||
items = line.split()[:len(headers)]
|
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||||
if len(items) < len(headers):
|
|
||||||
continue
|
|
||||||
|
|
||||||
output += '\t'.join(items)
|
|
||||||
|
|
||||||
for datatype,labels in active.items():
|
|
||||||
for label in labels:
|
|
||||||
for i in range(3):
|
|
||||||
for j in range(datainfo[datatype]['len']//3):
|
|
||||||
output += '\t%f'%curl_field[datatype][label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]][i][j]
|
|
||||||
output += '\n'
|
|
||||||
idx += 1
|
idx += 1
|
||||||
|
|
||||||
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
|
for label in labels: # loop over all requested norms
|
||||||
|
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
|
||||||
|
|
||||||
|
table.data_write() # output processed line
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
|
|
||||||
if file['name'] == 'STDIN':
|
table.output_flush() # just in case of buffered ASCII table
|
||||||
print output
|
|
||||||
else:
|
file['input'].close() # close input ASCII table
|
||||||
file['handle'] = open(file['name']+'_tmp','w')
|
if file['name'] != 'STDIN':
|
||||||
try:
|
file['output'].close # close output ASCII table
|
||||||
file['handle'].write(output)
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||||
file['handle'].close()
|
|
||||||
os.rename(file['name']+'_tmp',file['name'])
|
|
||||||
except:
|
|
||||||
print 'error during writing',file['name']+'_tmp'
|
|
||||||
|
|
Loading…
Reference in New Issue