Merge branch 'spectral-polish' into 'development'

Spectral polish

See merge request damask/DAMASK!524
This commit is contained in:
Navyanth Kusampudi 2022-02-15 12:32:09 +00:00
commit b0bbb1c286
3 changed files with 119 additions and 93 deletions

View File

@ -31,7 +31,7 @@ module spectral_utilities
!--------------------------------------------------------------------------------------------------
! grid related information
real(pReal), protected, public :: wgt !< weighting factor 1/Nelems
integer, protected, public :: grid1Red !< cells(1)/2
integer, protected, public :: cells1Red !< cells(1)/2
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence
!--------------------------------------------------------------------------------------------------
@ -201,7 +201,7 @@ subroutine spectral_utilities_init
num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc)
CHKERRQ(err_PETSc)
grid1Red = cells(1)/2 + 1
cells1Red = cells(1)/2 + 1
wgt = 1.0/real(product(cells),pReal)
num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file
@ -265,8 +265,8 @@ subroutine spectral_utilities_init
gridFFTW = int(cells,C_INTPTR_T)
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
PETSC_COMM_WORLD, local_K, local_K_offset)
allocate (xi1st (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
allocate (xi2nd (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
allocate (xi1st (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
allocate (xi2nd (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
tensorField = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
@ -333,7 +333,7 @@ subroutine spectral_utilities_init
do j = 1, cells(2)
k_s(2) = j - 1
if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
do i = 1, grid1Red
do i = 1, cells1Red
k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1
xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s)
where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. &
@ -347,7 +347,7 @@ subroutine spectral_utilities_init
if (num%memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
else ! precalculation of gamma_hat field
allocate (gamma_hat(3,3,3,3,grid1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
allocate (gamma_hat(3,3,3,3,cells1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
endif
end subroutine spectral_utilities_init
@ -362,7 +362,7 @@ end subroutine spectral_utilities_init
subroutine utilities_updateGamma(C)
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
complex(pReal), dimension(3,3) :: temp33_cmplx, xiDyad_cmplx
real(pReal), dimension(6,6) :: A, A_inv
integer :: &
i, j, k, &
@ -373,26 +373,39 @@ subroutine utilities_updateGamma(C)
if (.not. num%memory_efficient) then
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, grid1Red
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err)
do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
do concurrent (l = 1:3, m = 1:3)
#ifndef __INTEL_COMPILER
do concurrent(l = 1:3, m = 1:3)
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
end do
do concurrent(l = 1:3, m = 1:3)
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
end do
A(1:3,1:3) = temp33_complex%re; A(4:6,4:6) = temp33_complex%re
A(1:3,4:6) = temp33_complex%im; A(4:6,1:3) = -temp33_complex%im
#else
forall(l = 1:3, m = 1:3) &
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
forall(l = 1:3, m = 1:3) &
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
#endif
A(1:3,1:3) = temp33_cmplx%re; A(4:6,4:6) = temp33_cmplx%re
A(1:3,4:6) = temp33_cmplx%im; A(4:6,1:3) = -temp33_cmplx%im
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
call math_invert(A_inv, err, A)
temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
temp33_cmplx = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
#ifndef __INTEL_COMPILER
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_complex(l,n)* &
conjg(-xi1st(o,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_cmplx(l,n) * xiDyad_cmplx(o,m)
end do
#else
forall(l=1:3, m=1:3, n=1:3, o=1:3) &
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_cmplx(l,n) * xiDyad_cmplx(o,m)
#endif
end if
end if
end do; end do; end do
!$OMP END PARALLEL DO
endif
end subroutine utilities_updateGamma
@ -405,7 +418,7 @@ end subroutine utilities_updateGamma
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTtensorForward
tensorField_real(1:3,1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
tensorField_real(1:3,1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
end subroutine utilities_FFTtensorForward
@ -429,7 +442,7 @@ end subroutine utilities_FFTtensorBackward
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarForward
scalarField_real(cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
scalarField_real(cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier)
end subroutine utilities_FFTscalarForward
@ -454,7 +467,7 @@ end subroutine utilities_FFTscalarBackward
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorForward
vectorField_real(1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
vectorField_real(1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
end subroutine utilities_FFTvectorForward
@ -478,7 +491,7 @@ end subroutine utilities_FFTvectorBackward
subroutine utilities_fourierGammaConvolution(fieldAim)
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
complex(pReal), dimension(3,3) :: temp33_cmplx, xiDyad_cmplx
real(pReal), dimension(6,6) :: A, A_inv
integer :: &
@ -493,38 +506,61 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation (mechanical equilibrium)
memoryEfficient: if (num%memory_efficient) then
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err,gamma_hat)
do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
#ifndef __INTEL_COMPILER
do concurrent(l = 1:3, m = 1:3)
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
end do
do concurrent(l = 1:3, m = 1:3)
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
end do
A(1:3,1:3) = temp33_complex%re; A(4:6,4:6) = temp33_complex%re
A(1:3,4:6) = temp33_complex%im; A(4:6,1:3) = -temp33_complex%im
#else
forall(l = 1:3, m = 1:3) &
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
forall(l = 1:3, m = 1:3) &
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
#endif
A(1:3,1:3) = temp33_cmplx%re; A(4:6,4:6) = temp33_cmplx%re
A(1:3,4:6) = temp33_cmplx%im; A(4:6,1:3) = -temp33_cmplx%im
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
call math_invert(A_inv, err, A)
temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
temp33_cmplx = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
#ifndef __INTEL_COMPILER
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k)
gamma_hat(l,m,n,o,1,1,1) = temp33_cmplx(l,n)*xiDyad_cmplx(o,m)
end do
do concurrent(l = 1:3, m = 1:3)
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
end do
#else
forall(l=1:3, m=1:3, n=1:3, o=1:3) &
gamma_hat(l,m,n,o,1,1,1) = temp33_cmplx(l,n)*xiDyad_cmplx(o,m)
forall(l = 1:3, m = 1:3) &
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
#endif
tensorField_fourier(1:3,1:3,i,j,k) = temp33_cmplx
else
gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
tensorField_fourier(1:3,1:3,i,j,k) = cmplx(0.0_pReal,0.0_pReal,pReal)
end if
do concurrent(l = 1:3, m = 1:3)
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
end do
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
end if
end do; end do; end do
!$OMP END PARALLEL DO
else memoryEfficient
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
!$OMP PARALLEL DO PRIVATE(l,m,temp33_cmplx)
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
#ifndef __INTEL_COMPILER
do concurrent(l = 1:3, m = 1:3)
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * tensorField_fourier(1:3,1:3,i,j,k))
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k))
end do
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
#else
forall(l = 1:3, m = 1:3) &
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k))
#endif
tensorField_fourier(1:3,1:3,i,j,k) = temp33_cmplx
end do; end do; end do
!$OMP END PARALLEL DO
end if memoryEfficient
if (cells3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal)
@ -544,12 +580,14 @@ subroutine utilities_fourierGreenConvolution(D_ref, mu_ref, Delta_t)
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation
do k = 1, cells3; do j = 1, cells(2) ;do i = 1, grid1Red
!$OMP PARALLEL DO PRIVATE(GreenOp_hat)
do k = 1, cells3; do j = 1, cells(2) ;do i = 1, cells1Red
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) &
/ (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) &
* sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k))))
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
enddo; enddo; enddo
!$OMP END PARALLEL DO
end subroutine utilities_fourierGreenConvolution
@ -572,7 +610,7 @@ real(pReal) function utilities_divergenceRMS()
! calculating RMS divergence criterion in Fourier space
utilities_divergenceRMS = 0.0_pReal
do k = 1, cells3; do j = 1, cells(2)
do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
do i = 2, cells1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector
@ -584,10 +622,10 @@ real(pReal) function utilities_divergenceRMS()
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2)
+ sum( real(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2)
enddo; enddo
if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
@ -617,7 +655,7 @@ real(pReal) function utilities_curlRMS()
utilities_curlRMS = 0.0_pReal
do k = 1, cells3; do j = 1, cells(2);
do i = 2, grid1Red - 1
do i = 2, cells1Red - 1
do l = 1, 3
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
@ -640,12 +678,12 @@ real(pReal) function utilities_curlRMS()
utilities_curlRMS = utilities_curlRMS &
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1)
do l = 1, 3
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
curl_fourier = (+tensorField_fourier(l,3,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1)
@ -736,9 +774,10 @@ subroutine utilities_fourierScalarGradient()
integer :: i, j, k
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg?
enddo; enddo; enddo
end do; end do; end do
end subroutine utilities_fourierScalarGradient
@ -748,11 +787,9 @@ end subroutine utilities_fourierScalarGradient
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorDivergence()
integer :: i, j, k
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
scalarField_fourier(i,j,k) = sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
enddo; enddo; enddo
scalarField_fourier(1:cells1Red,1:cells(2),1:cells3) = sum(vectorField_fourier(1:3,1:cells1Red,1:cells(2),1:cells3) &
*conjg(-xi1st),1)
end subroutine utilities_fourierVectorDivergence
@ -764,11 +801,12 @@ subroutine utilities_fourierVectorGradient()
integer :: i, j, k, m, n
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
do m = 1, 3; do n = 1, 3
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
enddo; enddo
enddo; enddo; enddo
end do; end do
end do; end do; end do
end subroutine utilities_fourierVectorGradient
@ -780,9 +818,10 @@ subroutine utilities_fourierTensorDivergence()
integer :: i, j, k
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k)))
enddo; enddo; enddo
end do; end do; end do
end subroutine utilities_fourierTensorDivergence
@ -884,11 +923,10 @@ pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate)
real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: &
utilities_calculateRate
if (heterogeneous) then
utilities_calculateRate = (field-field0) / dt
else
utilities_calculateRate = spread(spread(spread(avRate,3,cells(1)),4,cells(2)),5,cells3)
endif
utilities_calculateRate = merge((field-field0) / dt, &
spread(spread(spread(avRate,3,cells(1)),4,cells(2)),5,cells3), &
heterogeneous)
end function utilities_calculateRate
@ -980,6 +1018,7 @@ end function utilities_getFreqDerivative
subroutine utilities_updateCoords(F)
real(pReal), dimension(3,3,cells(1),cells(2),cells3), intent(in) :: F
real(pReal), dimension(3, cells(1),cells(2),cells3) :: IPcoords
real(pReal), dimension(3, cells(1),cells(2),cells3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI)
real(pReal), dimension(3, cells(1)+1,cells(2)+1,cells3+1) :: nodeCoords
@ -1010,20 +1049,23 @@ subroutine utilities_updateCoords(F)
1, 1, 1, &
0, 1, 1 ], [3,8])
step = geomSize/real(cells, pReal)
!--------------------------------------------------------------------------------------------------
! integration in Fourier space to get fluctuations of cell center discplacements
tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = F
call utilities_FFTtensorForward()
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red
!$OMP PARALLEL DO
do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k+cells3Offset] /= 1)) then
vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) &
/ sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal)
else
vectorField_fourier(1:3,i,j,k) = cmplx(0.0,0.0,pReal)
endif
enddo; enddo; enddo
end if
end do; end do; end do
!$OMP END PARALLEL DO
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)

View File

@ -262,9 +262,8 @@ pure function math_identity4th()
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
enddo
#else
do i=1,3; do j=1,3; do k=1,3; do l=1,3
forall(i=1:3, j=1:3, k=1:3, l=1:3) &
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
enddo; enddo; enddo; enddo
#endif
end function math_identity4th
@ -338,9 +337,7 @@ pure function math_outer(A,B)
math_outer(i,j) = A(i)*B(j)
enddo
#else
do i=1,size(A,1); do j=1,size(B,1)
math_outer(i,j) = A(i)*B(j)
enddo; enddo
forall(i=1:size(A,1), j=1:size(B,1)) math_outer(i,j) = A(i)*B(j)
#endif
end function math_outer
@ -387,9 +384,7 @@ pure function math_mul3333xx33(A,B)
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
enddo
#else
do i=1,3; do j=1,3
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
enddo; enddo
forall (i=1:3, j=1:3) math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
#endif
end function math_mul3333xx33
@ -411,9 +406,7 @@ pure function math_mul3333xx3333(A,B)
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
enddo
#else
do i=1,3; do j=1,3; do k=1,3; do l=1,3
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
enddo; enddo; enddo; enddo
forall(i=1:3, j=1:3, k=1:3, l=1:3) math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
#endif
end function math_mul3333xx3333
@ -752,9 +745,7 @@ pure function math_3333to99(m3333)
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
enddo
#else
do i=1,9; do j=1,9
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
enddo; enddo
forall(i=1:9, j=1:9) math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
#endif
end function math_3333to99
@ -775,9 +766,7 @@ pure function math_99to3333(m99)
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
enddo
#else
do i=1,9; do j=1,9
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
enddo; enddo
forall(i=1:9, j=1:9) math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
#endif
end function math_99to3333
@ -810,9 +799,7 @@ pure function math_sym3333to66(m3333,weighted)
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
enddo
#else
do i=1,6; do j=1,6
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
enddo; enddo
forall(i=1:6, j=1:6) math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
#endif
end function math_sym3333to66
@ -950,9 +937,7 @@ pure function math_3333toVoigt66_stiffness(C) result(C_tilde)
C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
end do
#else
do i=1,6; do j=1,6
C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
end do; end do
forall(i=1:6, j=1:6) C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
#endif
end function math_3333toVoigt66_stiffness

View File

@ -382,7 +382,6 @@ module function plastic_deltaState(ph, en) result(broken)
real(pReal), dimension(3,3) :: &
Mp
integer :: &
myOffset, &
mySize