more readable
This commit is contained in:
parent
2547d4a25c
commit
af2a4c6e72
|
@ -73,23 +73,23 @@ mesh:
|
|||
|
||||
phase:
|
||||
mechanical:
|
||||
step_min: 1.0e-3 # minimum (relative) size of step allowed during cutback in phase state calculation
|
||||
r_cutback_step: 0.25 # factor to decrease size of step when cutback introduced in phase state calculation (value between 0 and 1)
|
||||
r_increase_step: 1.5 # factor to increase size of next step when previous step converged in phase state calculation
|
||||
r_cutback_min: 1.0e-3 # minimum (relative) size of step allowed during cutback in phase state calculation
|
||||
r_cutback: 0.25 # factor to decrease size of step when cutback introduced in phase state calculation (value between 0 and 1)
|
||||
r_increase: 1.5 # factor to increase size of next step when previous step converged in phase state calculation
|
||||
eps_rel_state: 1.0e-6 # relative tolerance in phase state loop (abs tol provided by constitutive law)
|
||||
N_iter_state_max: 10 # state loop limit
|
||||
|
||||
plastic:
|
||||
r_cutback_step_Lp: 0.5 # factor to decrease the step when cutback in Lp calculation
|
||||
eps_rel_Lp: 1.0e-6 # relative tolerance in phase stress loop (Lp residuum)
|
||||
eps_abs_Lp: 1.0e-8 # absolute tolerance in phase stress loop (Lp residuum)
|
||||
r_linesearch_Lp: 0.5 # factor to decrease the step due to non-convergence in Lp calculation
|
||||
eps_rel_Lp: 1.0e-6 # relative tolerance in Lp residuum
|
||||
eps_abs_Lp: 1.0e-8 # absolute tolerance in Lp residuum
|
||||
N_iter_Lp_max: 40 # stress loop limit for Lp
|
||||
f_update_jacobi_Lp: 1 # frequency of Jacobian update of residuum in Lp
|
||||
integrator_state: FPI # integration method (FPI = Fixed Point Iteration, Euler = Euler, AdaptiveEuler = Adaptive Euler, RK4 = classical 4th order Runge-Kutta, RKCK45 = 5th order Runge-Kutta Cash-Karp)
|
||||
eigen:
|
||||
r_cutback_step_Li: 0.5 # factor to decrease the step when cutback in Li calculation
|
||||
eps_rel_Li: 1.0e-6 # relative tolerance in phase stress loop (Li residuum)
|
||||
eps_abs_Li: 1.0e-8 # absolute tolerance in phase stress loop (Li residuum)
|
||||
r_linesearch_Li: 0.5 # factor to decrease the step due to non-convergence in Li calculation
|
||||
eps_rel_Li: 1.0e-6 # relative tolerance in Li residuum
|
||||
eps_abs_Li: 1.0e-8 # absolute tolerance in Li residuum
|
||||
N_iter_Li_max: 40 # stress loop limit for Li
|
||||
f_update_jacobi_Li: 1 # frequency of Jacobian update of residuum in Li
|
||||
|
||||
|
|
|
@ -277,28 +277,28 @@ module subroutine mechanical_init(phases, num_mech)
|
|||
num_mech_plastic => num_mech%get_dict('plastic', defaultVal=emptyDict)
|
||||
num_mech_eigen => num_mech%get_dict('eigen', defaultVal=emptyDict)
|
||||
|
||||
num%stepMinCryst = num_mech%get_asReal ('step_min', defaultVal=1.0e-3_pREAL)
|
||||
num%stepSizeCryst = num_mech%get_asReal ('r_cutback_step', defaultVal=0.25_pREAL)
|
||||
num%stepIncreaseCryst = num_mech%get_asReal ('r_increase_step', defaultVal=1.5_pREAL)
|
||||
num%stepMinCryst = num_mech%get_asReal ('r_cutback_min', defaultVal=1.0e-3_pREAL)
|
||||
num%stepSizeCryst = num_mech%get_asReal ('r_cutback', defaultVal=0.25_pREAL)
|
||||
num%stepIncreaseCryst = num_mech%get_asReal ('r_increase', defaultVal=1.5_pREAL)
|
||||
num%rtol_crystalliteState = num_mech%get_asReal ('eps_rel_state', defaultVal=1.0e-6_pREAL)
|
||||
num%nState = num_mech%get_asInt ('N_iter_state_max', defaultVal=20)
|
||||
num%nStress_Lp = num_mech_plastic%get_asInt ('N_iter_Lp_max', defaultVal=40)
|
||||
num%stepSizeLp = num_mech_plastic%get_asReal ('r_cutback_step_Lp', defaultVal=0.5_pREAL)
|
||||
num%stepSizeLp = num_mech_plastic%get_asReal ('r_linesearch_Lp', defaultVal=0.5_pREAL)
|
||||
num%rtol_Lp = num_mech_plastic%get_asReal ('eps_rel_Lp', defaultVal=1.0e-6_pREAL)
|
||||
num%atol_Lp = num_mech_plastic%get_asReal ('eps_abs_Lp', defaultVal=1.0e-8_pREAL)
|
||||
num%iJacoLpresiduum = num_mech_plastic%get_asInt ('f_update_jacobi_Lp', defaultVal=1)
|
||||
num%nStress_Li = num_mech_eigen%get_asInt ('N_iter_Li_max', defaultVal=40)
|
||||
num%stepSizeLi = num_mech_eigen%get_asReal ('r_cutback_step_Li', defaultVal=0.5_pREAL)
|
||||
num%stepSizeLi = num_mech_eigen%get_asReal ('r_linesearch_Li', defaultVal=0.5_pREAL)
|
||||
num%rtol_Li = num_mech_eigen%get_asReal ('eps_rel_Li', defaultVal=num%rtol_Lp)
|
||||
num%atol_Li = num_mech_eigen%get_asReal ('eps_abs_Li', defaultVal=num%atol_Lp)
|
||||
num%iJacoLiresiduum = num_mech_eigen%get_asInt ('f_update_jacobi_Li', defaultVal=num%iJacoLpresiduum)
|
||||
|
||||
extmsg = ''
|
||||
if (num%stepMinCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' sub_step_min'
|
||||
if (num%stepSizeCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' r_cutback_step'
|
||||
if (num%stepIncreaseCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' r_increase_step'
|
||||
if (num%stepSizeLp <= 0.0_pREAL) extmsg = trim(extmsg)//' r_cutback_step_Lp'
|
||||
if (num%stepSizeLi <= 0.0_pREAL) extmsg = trim(extmsg)//' r_cutback_step_Li'
|
||||
if (num%stepMinCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' r_cutback_min'
|
||||
if (num%stepSizeCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' r_cutback'
|
||||
if (num%stepIncreaseCryst <= 0.0_pREAL) extmsg = trim(extmsg)//' r_increase'
|
||||
if (num%stepSizeLp <= 0.0_pREAL) extmsg = trim(extmsg)//' r_linesearch_Lp'
|
||||
if (num%stepSizeLi <= 0.0_pREAL) extmsg = trim(extmsg)//' r_linesearch_Li'
|
||||
if (num%rtol_Lp <= 0.0_pREAL) extmsg = trim(extmsg)//' epl_rel_Lp'
|
||||
if (num%atol_Lp <= 0.0_pREAL) extmsg = trim(extmsg)//' eps_abs_Lp'
|
||||
if (num%rtol_Li <= 0.0_pREAL) extmsg = trim(extmsg)//' eps_rel_Li'
|
||||
|
@ -377,9 +377,9 @@ end subroutine mechanical_result
|
|||
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
|
||||
!> intermediate acceleration of the Newton-Raphson correction
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function integrateStress(F,subFp0,subFi0,Delta_t,ph,en) result(broken)
|
||||
function integrateStress(F,Fp0,Fi0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), dimension(3,3), intent(in) :: F,subFp0,subFi0
|
||||
real(pREAL), dimension(3,3), intent(in) :: F,Fp0,Fi0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: ph, en
|
||||
|
||||
|
@ -439,9 +439,9 @@ function integrateStress(F,subFp0,subFi0,Delta_t,ph,en) result(broken)
|
|||
Lpguess = phase_mechanical_Lp(ph)%data(1:3,1:3,en) ! take as first guess
|
||||
Liguess = phase_mechanical_Li(ph)%data(1:3,1:3,en) ! take as first guess
|
||||
|
||||
call math_invert33(invFp_current,error=error,A=subFp0)
|
||||
call math_invert33(invFp_current,error=error,A=Fp0)
|
||||
if (error) return ! error
|
||||
call math_invert33(invFi_current,error=error,A=subFi0)
|
||||
call math_invert33(invFi_current,error=error,A=Fi0)
|
||||
if (error) return ! error
|
||||
|
||||
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
|
||||
|
@ -582,10 +582,10 @@ end function integrateStress
|
|||
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
|
||||
!> using Fixed Point Iteration to adapt the stepsize
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
||||
function integrateStateFPI(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
|
@ -611,14 +611,14 @@ function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(b
|
|||
if (any(IEEE_is_NaN(dotState))) return
|
||||
|
||||
sizeDotState = plasticState(ph)%sizeDotState
|
||||
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState * Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = state0 + dotState * Delta_t
|
||||
|
||||
iteration: do NiterationState = 1, num%nState
|
||||
|
||||
dotState_last(1:sizeDotState,2) = merge(dotState_last(1:sizeDotState,1),0.0_pREAL, nIterationState > 1)
|
||||
dotState_last(1:sizeDotState,1) = dotState
|
||||
|
||||
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
||||
broken = integrateStress(F,Fp0,Fi0,Delta_t,ph,en)
|
||||
if (broken) exit iteration
|
||||
|
||||
dotState = plastic_dotState(Delta_t,ph,en)
|
||||
|
@ -628,7 +628,7 @@ function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(b
|
|||
dotState = dotState * zeta &
|
||||
+ dotState_last(1:sizeDotState,1) * (1.0_pREAL - zeta)
|
||||
r = plasticState(ph)%state(1:sizeDotState,en) &
|
||||
- subState0 &
|
||||
- state0 &
|
||||
- dotState * Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = plasticState(ph)%state(1:sizeDotState,en) - r
|
||||
|
||||
|
@ -670,10 +670,10 @@ end function integrateStateFPI
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief integrate state with 1st order explicit Euler method
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
||||
function integrateStateEuler(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
|
@ -694,15 +694,15 @@ function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result
|
|||
|
||||
sizeDotState = plasticState(ph)%sizeDotState
|
||||
#ifndef __INTEL_LLVM_COMPILER
|
||||
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = state0 + dotState*Delta_t
|
||||
#else
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,state0)
|
||||
#endif
|
||||
|
||||
broken = plastic_deltaState(ph,en)
|
||||
if (broken) return
|
||||
|
||||
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
||||
broken = integrateStress(F,Fp0,Fi0,Delta_t,ph,en)
|
||||
|
||||
end function integrateStateEuler
|
||||
|
||||
|
@ -710,10 +710,10 @@ end function integrateStateEuler
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
||||
function integrateStateAdaptiveEuler(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
|
@ -737,15 +737,15 @@ function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en
|
|||
|
||||
r = - dotState * 0.5_pREAL * Delta_t
|
||||
#ifndef __INTEL_LLVM_COMPILER
|
||||
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = state0 + dotState*Delta_t
|
||||
#else
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,state0)
|
||||
#endif
|
||||
|
||||
broken = plastic_deltaState(ph,en)
|
||||
if (broken) return
|
||||
|
||||
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
||||
broken = integrateStress(F,Fp0,Fi0,Delta_t,ph,en)
|
||||
if (broken) return
|
||||
|
||||
dotState = plastic_dotState(Delta_t,ph,en)
|
||||
|
@ -761,10 +761,10 @@ end function integrateStateAdaptiveEuler
|
|||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function integrateStateRK4(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
||||
function integrateStateRK4(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: ph, en
|
||||
logical :: broken
|
||||
|
@ -781,7 +781,7 @@ function integrateStateRK4(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(b
|
|||
B = [6.0_pREAL, 3.0_pREAL, 3.0_pREAL, 6.0_pREAL]**(-1)
|
||||
|
||||
|
||||
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C)
|
||||
broken = integrateStateRK(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en,A,B,C)
|
||||
|
||||
end function integrateStateRK4
|
||||
|
||||
|
@ -789,10 +789,10 @@ end function integrateStateRK4
|
|||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief Integrate state (including stress integration) with the Cash-Carp method
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function integrateStateRKCK45(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
||||
function integrateStateRKCK45(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
integer, intent(in) :: ph, en
|
||||
logical :: broken
|
||||
|
@ -816,7 +816,7 @@ function integrateStateRKCK45(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) resul
|
|||
13525.0_pREAL/55296.0_pREAL, 277.0_pREAL/14336.0_pREAL, 1._pREAL/4._pREAL]
|
||||
|
||||
|
||||
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
|
||||
broken = integrateStateRK(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en,A,B,C,DB)
|
||||
|
||||
end function integrateStateRKCK45
|
||||
|
||||
|
@ -825,10 +825,10 @@ end function integrateStateRKCK45
|
|||
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
|
||||
!! embedded explicit Runge-Kutta method
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB) result(broken)
|
||||
function integrateStateRK(F_0,F,Fp0,Fi0,state0,Delta_t,ph,en,A,B,C,DB) result(broken)
|
||||
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
||||
real(pREAL), intent(in),dimension(:) :: subState0
|
||||
real(pREAL), intent(in),dimension(3,3) :: F_0,F,Fp0,Fi0
|
||||
real(pREAL), intent(in),dimension(:) :: state0
|
||||
real(pREAL), intent(in) :: Delta_t
|
||||
real(pREAL), dimension(:,:), intent(in) :: A
|
||||
real(pREAL), dimension(:), intent(in) :: B, C
|
||||
|
@ -869,12 +869,12 @@ function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
|
|||
end do
|
||||
|
||||
#ifndef __INTEL_LLVM_COMPILER
|
||||
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = state0 + dotState*Delta_t
|
||||
#else
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,state0)
|
||||
#endif
|
||||
|
||||
broken = integrateStress(F_0+(F-F_0)*Delta_t*C(stage),subFp0,subFi0,Delta_t*C(stage), ph,en)
|
||||
broken = integrateStress(F_0+(F-F_0)*Delta_t*C(stage),Fp0,Fi0,Delta_t*C(stage), ph,en)
|
||||
if (broken) exit
|
||||
|
||||
dotState = plastic_dotState(Delta_t*C(stage), ph,en)
|
||||
|
@ -887,9 +887,9 @@ function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
|
|||
plastic_RKdotState(1:sizeDotState,size(B)) = dotState
|
||||
dotState = matmul(plastic_RKdotState,B)
|
||||
#ifndef __INTEL_LLVM_COMPILER
|
||||
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
|
||||
plasticState(ph)%state(1:sizeDotState,en) = state0 + dotState*Delta_t
|
||||
#else
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
|
||||
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,state0)
|
||||
#endif
|
||||
|
||||
if (present(DB)) &
|
||||
|
@ -902,7 +902,7 @@ function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
|
|||
broken = plastic_deltaState(ph,en)
|
||||
if (broken) return
|
||||
|
||||
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
||||
broken = integrateStress(F,Fp0,Fi0,Delta_t,ph,en)
|
||||
|
||||
end function integrateStateRK
|
||||
|
||||
|
@ -1019,24 +1019,24 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(converged_)
|
|||
logical :: todo
|
||||
real(pREAL) :: stepFrac,step
|
||||
real(pREAL), dimension(3,3) :: &
|
||||
subFp0, &
|
||||
subFi0, &
|
||||
subLp0, &
|
||||
subLi0, &
|
||||
subF0, &
|
||||
subF
|
||||
real(pREAL), dimension(plasticState(material_ID_phase(co,ce))%sizeState) :: subState0
|
||||
Fp0, &
|
||||
Fi0, &
|
||||
Lp0, &
|
||||
Li0, &
|
||||
F0, &
|
||||
F
|
||||
real(pREAL), dimension(plasticState(material_ID_phase(co,ce))%sizeState) :: state0
|
||||
|
||||
|
||||
ph = material_ID_phase(co,ce)
|
||||
en = material_entry_phase(co,ce)
|
||||
|
||||
subState0 = plasticState(ph)%state0(:,en)
|
||||
subLi0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
|
||||
subLp0 = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
|
||||
subFp0 = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
|
||||
subFi0 = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
|
||||
subF0 = phase_mechanical_F0(ph)%data(1:3,1:3,en)
|
||||
state0 = plasticState(ph)%state0(:,en)
|
||||
Li0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
|
||||
Lp0 = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
|
||||
Fp0 = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
|
||||
Fi0 = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
|
||||
F0 = phase_mechanical_F0(ph)%data(1:3,1:3,en)
|
||||
stepFrac = 0.0_pREAL
|
||||
todo = .true.
|
||||
step = 1.0_pREAL/num%stepSizeCryst
|
||||
|
@ -1053,25 +1053,25 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(converged_)
|
|||
todo = step > 0.0_pREAL ! still time left to integrate on?
|
||||
|
||||
if (todo) then
|
||||
subF0 = subF
|
||||
subLp0 = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
|
||||
subLi0 = phase_mechanical_Li(ph)%data(1:3,1:3,en)
|
||||
subFp0 = phase_mechanical_Fp(ph)%data(1:3,1:3,en)
|
||||
subFi0 = phase_mechanical_Fi(ph)%data(1:3,1:3,en)
|
||||
subState0 = plasticState(ph)%state(:,en)
|
||||
F0 = F
|
||||
Lp0 = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
|
||||
Li0 = phase_mechanical_Li(ph)%data(1:3,1:3,en)
|
||||
Fp0 = phase_mechanical_Fp(ph)%data(1:3,1:3,en)
|
||||
Fi0 = phase_mechanical_Fi(ph)%data(1:3,1:3,en)
|
||||
state0 = plasticState(ph)%state(:,en)
|
||||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! cut back (reduced time and restore)
|
||||
else
|
||||
step = num%stepSizeCryst * step
|
||||
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = subFp0
|
||||
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = subFi0
|
||||
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = Fp0
|
||||
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = Fi0
|
||||
phase_mechanical_S(ph)%data(1:3,1:3,en) = phase_mechanical_S0(ph)%data(1:3,1:3,en)
|
||||
if (step < 1.0_pREAL) then ! actual (not initial) cutback
|
||||
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = subLp0
|
||||
phase_mechanical_Li(ph)%data(1:3,1:3,en) = subLi0
|
||||
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = Lp0
|
||||
phase_mechanical_Li(ph)%data(1:3,1:3,en) = Li0
|
||||
end if
|
||||
plasticState(ph)%state(:,en) = subState0
|
||||
plasticState(ph)%state(:,en) = state0
|
||||
todo = step > num%stepMinCryst ! still on track or already done (beyond repair)
|
||||
end if
|
||||
|
||||
|
@ -1079,9 +1079,9 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(converged_)
|
|||
! prepare for integration
|
||||
if (todo) then
|
||||
sizeDotState = plasticState(ph)%sizeDotState
|
||||
subF = subF0 &
|
||||
F = F0 &
|
||||
+ step * (phase_mechanical_F(ph)%data(1:3,1:3,en) - phase_mechanical_F0(ph)%data(1:3,1:3,en))
|
||||
converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),step * Delta_t,ph,en)
|
||||
converged_ = .not. integrateState(F0,F,Fp0,Fi0,state0(1:sizeDotState),step * Delta_t,ph,en)
|
||||
end if
|
||||
|
||||
end do cutbackLooping
|
||||
|
|
Loading…
Reference in New Issue