fix for vectorized from_random
This commit is contained in:
parent
23fc58699f
commit
ae3eca5f98
|
@ -265,9 +265,9 @@ class Rotation:
|
|||
qu[qu[...,0] < 0.0] *= -1
|
||||
else:
|
||||
if np.any(qu[...,0] < 0.0):
|
||||
raise ValueError('Quaternions need to have positive first(real) component.')
|
||||
raise ValueError('Quaternion with negative first (real) component.')
|
||||
if not np.all(np.isclose(np.linalg.norm(qu,axis=-1), 1.0)):
|
||||
raise ValueError('Quaternions need to have unit length.')
|
||||
raise ValueError('Quaternion is not of unit length.')
|
||||
|
||||
return Rotation(qu)
|
||||
|
||||
|
@ -279,7 +279,7 @@ class Rotation:
|
|||
|
||||
eu = np.radians(eu) if degrees else eu
|
||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or np.any(eu[...,1] > np.pi): # ToDo: No separate check for PHI
|
||||
raise ValueError('Euler angles need to be in [0..2π],[0..π],[0..2π].')
|
||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].')
|
||||
|
||||
return Rotation(Rotation.eu2qu(eu))
|
||||
|
||||
|
@ -315,11 +315,11 @@ class Rotation:
|
|||
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
|
||||
om = np.einsum('...ij,...jl->...il',U,Vh)
|
||||
if not np.all(np.isclose(np.linalg.det(om),1.0)):
|
||||
raise ValueError('matrix is not a proper rotation: {}.'.format(om))
|
||||
raise ValueError('Orientation matrix has determinant ≠ 1.')
|
||||
if not np.all(np.isclose(np.einsum('...i,...i',om[...,0],om[...,1]), 0.0)) \
|
||||
or not np.all(np.isclose(np.einsum('...i,...i',om[...,1],om[...,2]), 0.0)) \
|
||||
or not np.all(np.isclose(np.einsum('...i,...i',om[...,2],om[...,0]), 0.0)):
|
||||
raise ValueError('matrix is not orthogonal.')
|
||||
raise ValueError('Orientation matrix is not orthogonal.')
|
||||
|
||||
return Rotation(Rotation.om2qu(om))
|
||||
|
||||
|
@ -338,9 +338,9 @@ class Rotation:
|
|||
if P > 0: ro[...,0:3] *= -1 # convert from P=1 to P=-1
|
||||
if normalise: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1)
|
||||
if np.any(ro[...,3] < 0.0):
|
||||
raise ValueError('Rodrigues rotation angle not positive.')
|
||||
raise ValueError('Rodrigues vector rotation angle not positive.')
|
||||
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
|
||||
raise ValueError('Rodrigues rotation axis is not of unit length.')
|
||||
raise ValueError('Rodrigues vector rotation axis is not of unit length.')
|
||||
|
||||
return Rotation(Rotation.ro2qu(ro))
|
||||
|
||||
|
@ -353,7 +353,7 @@ class Rotation:
|
|||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
if np.any(np.linalg.norm(ho,axis=-1) > (3.*np.pi/4.)**(1./3.)+1e-9):
|
||||
raise ValueError('Coordinate outside of the sphere.')
|
||||
raise ValueError('Homochoric coordinate outside of the sphere.')
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
|
@ -364,7 +364,7 @@ class Rotation:
|
|||
cu = np.array(cubochoric,dtype=float)
|
||||
|
||||
if np.abs(np.max(cu))>np.pi**(2./3.) * 0.5+1e-9:
|
||||
raise ValueError('Coordinate outside of the cube: {} {} {}.'.format(*cu))
|
||||
raise ValueError('Cubochoric coordinate outside of the cube: {} {} {}.'.format(*cu))
|
||||
|
||||
ho = Rotation.cu2ho(cu)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
@ -408,14 +408,20 @@ class Rotation:
|
|||
def from_random(shape=None):
|
||||
if shape is None:
|
||||
r = np.random.random(3)
|
||||
else:
|
||||
elif hasattr(shape, '__iter__'):
|
||||
r = np.random.random(tuple(shape)+(3,))
|
||||
else:
|
||||
r = np.random.random((shape,3))
|
||||
|
||||
A = np.sqrt(r[...,2])
|
||||
B = np.sqrt(1.0-r[...,2])
|
||||
return Rotation(np.block([np.cos(2.0*np.pi*r[...,0])*A,
|
||||
q = np.stack([np.cos(2.0*np.pi*r[...,0])*A,
|
||||
np.sin(2.0*np.pi*r[...,1])*B,
|
||||
np.cos(2.0*np.pi*r[...,1])*B,
|
||||
np.sin(2.0*np.pi*r[...,0])*A])).standardize()
|
||||
np.sin(2.0*np.pi*r[...,0])*A],axis=-1)
|
||||
|
||||
return Rotation(q.reshape(r.shape[:-1]+(4,)) if shape is not None else q).standardize()
|
||||
|
||||
|
||||
# for compatibility (old names do not follow convention)
|
||||
fromQuaternion = from_quaternion
|
||||
|
@ -820,7 +826,6 @@ class Rotation:
|
|||
c = np.cos(ax[3]*0.5)
|
||||
s = np.sin(ax[3]*0.5)
|
||||
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
||||
return qu
|
||||
else:
|
||||
c = np.cos(ax[...,3:4]*.5)
|
||||
s = np.sin(ax[...,3:4]*.5)
|
||||
|
@ -871,7 +876,7 @@ class Rotation:
|
|||
# 180 degree case
|
||||
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
||||
[np.tan(ax[3]*0.5)]
|
||||
return np.array(ro)
|
||||
ro = np.array(ro)
|
||||
else:
|
||||
ro = np.block([ax[...,:3],
|
||||
np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
|
||||
|
@ -887,7 +892,6 @@ class Rotation:
|
|||
if len(ax.shape) == 1:
|
||||
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
||||
ho = ax[0:3] * f
|
||||
return ho
|
||||
else:
|
||||
f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
|
||||
ho = ax[...,:3] * f
|
||||
|
@ -948,7 +952,6 @@ class Rotation:
|
|||
f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
|
||||
ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-6,ro[...,0:3].shape),
|
||||
np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
|
||||
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
|
|
Loading…
Reference in New Issue