bugfix: synchronizatopm of dPdF_min and dPdF_max was not correct

-before: using componenwise min/max among different processors
-now:    identify the processor that holds the minimum/maximum of the
norm
This commit is contained in:
Martin Diehl 2019-03-07 07:01:09 +01:00
parent 507963d558
commit ae3de821b4
1 changed files with 269 additions and 276 deletions

View File

@ -584,28 +584,27 @@ end subroutine utilities_fourierGammaConvolution
!> @brief doing convolution DamageGreenOp_hat * field_real
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
use math, only: &
math_mul33x3, &
PI
use mesh, only: &
grid, &
grid3
use math, only: &
math_mul33x3, &
PI
use mesh, only: &
grid, &
grid3
implicit none
real(pReal), dimension(3,3), intent(in) :: D_ref !< desired average value of the field after convolution
real(pReal), intent(in) :: mobility_ref, deltaT !< desired average value of the field after convolution
complex(pReal) :: GreenOp_hat
integer(pInt) :: i, j, k
implicit none
real(pReal), dimension(3,3), intent(in) :: D_ref
real(pReal), intent(in) :: mobility_ref, deltaT
complex(pReal) :: GreenOp_hat
integer(pInt) :: i, j, k
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal)/ &
(cmplx(mobility_ref,0.0_pReal,pReal) + cmplx(deltaT,0.0_pReal)*&
sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) ! why not use dot_product
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
enddo; enddo; enddo
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal)/ &
(cmplx(mobility_ref,0.0_pReal,pReal) + cmplx(deltaT,0.0_pReal)*&
sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) ! why not use dot_product
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
enddo; enddo; enddo
end subroutine utilities_fourierGreenConvolution
@ -614,47 +613,47 @@ end subroutine utilities_fourierGreenConvolution
!> @brief calculate root mean square of divergence of field_fourier
!--------------------------------------------------------------------------------------------------
real(pReal) function utilities_divergenceRMS()
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
implicit none
integer(pInt) :: i, j, k, ierr
complex(pReal), dimension(3) :: rescaledGeom
implicit none
integer(pInt) :: i, j, k, ierr
complex(pReal), dimension(3) :: rescaledGeom
write(6,'(/,a)') ' ... calculating divergence ................................................'
flush(6)
write(6,'(/,a)') ' ... calculating divergence ................................................'
flush(6)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
utilities_divergenceRMS = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2)
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),&
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal))
enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
enddo; enddo
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS')
utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
utilities_divergenceRMS = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2)
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),&
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal))
enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
enddo; enddo
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS')
utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
end function utilities_divergenceRMS
@ -664,66 +663,66 @@ end function utilities_divergenceRMS
!> @brief calculate max of curl of field_fourier
!--------------------------------------------------------------------------------------------------
real(pReal) function utilities_curlRMS()
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
implicit none
integer(pInt) :: i, j, k, l, ierr
complex(pReal), dimension(3,3) :: curl_fourier
complex(pReal), dimension(3) :: rescaledGeom
implicit none
integer(pInt) :: i, j, k, l, ierr
complex(pReal), dimension(3,3) :: curl_fourier
complex(pReal), dimension(3) :: rescaledGeom
write(6,'(/,a)') ' ... calculating curl ......................................................'
flush(6)
write(6,'(/,a)') ' ... calculating curl ......................................................'
flush(6)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!--------------------------------------------------------------------------------------------------
! calculating max curl criterion in Fourier space
utilities_curlRMS = 0.0_pReal
utilities_curlRMS = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1))
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+2.0_pReal*sum(real(curl_fourier)**2.0_pReal+aimag(curl_fourier)**2.0_pReal) ! Has somewhere a conj. complex counterpart. Therefore count it twice.
enddo
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
enddo; enddo
do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1))
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+2.0_pReal*sum(real(curl_fourier)**2.0_pReal+aimag(curl_fourier)**2.0_pReal)! Has somewhere a conj. complex counterpart. Therefore count it twice.
enddo
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
enddo; enddo
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS')
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS')
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
end function utilities_curlRMS
@ -817,9 +816,6 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced)
if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance')
endif
deallocate(c_reduced)
deallocate(s_reduced)
deallocate(sTimesC)
else
temp99_real = 0.0_pReal
endif
@ -837,16 +833,16 @@ end function utilities_maskedCompliance
!> @brief calculate scalar gradient in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierScalarGradient()
use mesh, only: &
grid3, &
grid
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k
implicit none
integer(pInt) :: i, j, k
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k)
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k)
end subroutine utilities_fourierScalarGradient
@ -855,17 +851,17 @@ end subroutine utilities_fourierScalarGradient
!> @brief calculate vector divergence in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorDivergence()
use mesh, only: &
grid3, &
grid
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k
implicit none
integer(pInt) :: i, j, k
scalarField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k) + &
sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
scalarField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k) + &
sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
end subroutine utilities_fourierVectorDivergence
@ -874,19 +870,20 @@ end subroutine utilities_fourierVectorDivergence
!> @brief calculate vector gradient in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorGradient()
use mesh, only: &
grid3, &
grid
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k, m, n
implicit none
integer(pInt) :: i, j, k, m, n
tensorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
enddo; enddo
enddo; enddo; enddo
tensorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
enddo; enddo
enddo; enddo; enddo
end subroutine utilities_fourierVectorGradient
@ -894,21 +891,22 @@ end subroutine utilities_fourierVectorGradient
!> @brief calculate tensor divergence in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierTensorDivergence()
use mesh, only: &
grid3, &
grid
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k, m, n
implicit none
integer(pInt) :: i, j, k, m, n
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
vectorField_fourier(m,i,j,k) = &
vectorField_fourier(m,i,j,k) + &
tensorField_fourier(m,n,i,j,k)*conjg(-xi1st(n,i,j,k))
enddo; enddo
enddo; enddo; enddo
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
vectorField_fourier(m,i,j,k) = &
vectorField_fourier(m,i,j,k) + &
tensorField_fourier(m,n,i,j,k)*conjg(-xi1st(n,i,j,k))
enddo; enddo
enddo; enddo; enddo
end subroutine utilities_fourierTensorDivergence
@ -917,99 +915,93 @@ end subroutine utilities_fourierTensorDivergence
!--------------------------------------------------------------------------------------------------
subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
F,timeinc,rotation_BC)
use IO, only: &
IO_error
use debug, only: &
debug_reset, &
debug_info
use math, only: &
math_rotate_forward33, &
math_det33
use mesh, only: &
grid,&
grid3
use homogenization, only: &
materialpoint_F, &
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_stressAndItsTangent
use IO, only: &
IO_error
use numerics, only: &
worldrank
use debug, only: &
debug_reset, &
debug_info
use math, only: &
math_rotate_forward33, &
math_det33
use mesh, only: &
grid,&
grid3
use homogenization, only: &
materialpoint_F, &
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_stressAndItsTangent
implicit none
real(pReal),intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness
real(pReal),intent(out), dimension(3,3) :: P_av !< average PK stress
real(pReal),intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target !< previous deformation gradient
real(pReal), intent(in) :: timeinc !< loading time
real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame
implicit none
real(pReal),intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness
real(pReal),intent(out), dimension(3,3) :: P_av !< average PK stress
real(pReal),intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target
real(pReal), intent(in) :: timeinc !< loading time
real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame
integer(pInt) :: &
j,k,ierr
real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF
real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet
integer(pInt) :: &
i,ierr
real(pReal), dimension(3,3,3,3) :: dPdF_max, dPdF_min
real(pReal) :: dPdF_norm_max, dPdF_norm_min
real(pReal), dimension(2) :: valueAndRank !< pair of min/max norm of dPdF to synchronize min/max of dPdF
write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
flush(6)
write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
flush(6)
materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do j = 1_pInt, product(grid(1:2))*grid3
defgradDet = math_det33(materialpoint_F(1:3,1:3,1,j))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
end do
call debug_reset() ! this has no effect on rank >0
call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field
write(6,'(a,1x,es11.4)') ' max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') ' min determinant of deformation =', defgradDetMin
flush(6)
endif
P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P
call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if (debugRotation) &
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',&
transpose(P_av)*1.e-6_pReal
P_av = math_rotate_forward33(P_av,rotation_BC)
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',&
transpose(P_av)*1.e-6_pReal
flush(6)
call debug_reset() ! this has no effect on rank >0
call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field
dPdF_max = 0.0_pReal
dPdF_norm_max = 0.0_pReal
dPdF_min = huge(1.0_pReal)
dPdF_norm_min = huge(1.0_pReal)
do i = 1_pInt, product(grid(1:2))*grid3
if (dPdF_norm_max < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)) then
dPdF_max = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)
dPdF_norm_max = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
endif
if (dPdF_norm_min > sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)) then
dPdF_min = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)
dPdF_norm_min = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
endif
end do
P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P
call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if (debugRotation) &
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',&
transpose(P_av)*1.e-6_pReal
P_av = math_rotate_forward33(P_av,rotation_BC)
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',&
transpose(P_av)*1.e-6_pReal
flush(6)
valueAndRank = [dPdF_norm_max,real(worldrank,pReal)]
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, PETSC_COMM_WORLD, ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce max')
call MPI_Bcast(dPdF_max,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Bcast max')
max_dPdF = 0.0_pReal
max_dPdF_norm = 0.0_pReal
min_dPdF = huge(1.0_pReal)
min_dPdF_norm = huge(1.0_pReal)
do k = 1_pInt, product(grid(1:2))*grid3
if (max_dPdF_norm < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then
max_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)
max_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)
endif
if (min_dPdF_norm > sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then
min_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)
min_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)
endif
end do
valueAndRank = [dPdF_norm_min,real(worldrank,pReal)]
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MINLOC, PETSC_COMM_WORLD, ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce min')
call MPI_Bcast(dPdF_min,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Bcast min')
call MPI_Allreduce(MPI_IN_PLACE,max_dPdF,81,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce max')
call MPI_Allreduce(MPI_IN_PLACE,min_dPdF,81,MPI_DOUBLE,MPI_MIN,PETSC_COMM_WORLD,ierr)
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce min')
C_minmaxAvg = 0.5_pReal*(dPdF_max + dPdF_min)
C_minmaxAvg = 0.5_pReal*(max_dPdF + min_dPdF)
C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5)
call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
C_volAvg = C_volAvg * wgt
C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5) * wgt
call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
call debug_info() ! this has no effect on rank >0
call debug_info() ! this has no effect on rank >0
end subroutine utilities_constitutiveResponse
@ -1018,27 +1010,28 @@ end subroutine utilities_constitutiveResponse
!> @brief calculates forward rate, either guessing or just add delta/timeinc
!--------------------------------------------------------------------------------------------------
pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate)
use mesh, only: &
grid3, &
grid
use mesh, only: &
grid3, &
grid
implicit none
real(pReal), intent(in), dimension(3,3) :: avRate !< homogeneous addon
real(pReal), intent(in) :: &
dt !< timeinc between field0 and field
logical, intent(in) :: &
heterogeneous !< calculate field of rates
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: &
field0, & !< data of previous step
field !< data of current step
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: &
utilities_calculateRate
implicit none
real(pReal), intent(in), dimension(3,3) :: &
avRate !< homogeneous addon
real(pReal), intent(in) :: &
dt !< timeinc between field0 and field
logical, intent(in) :: &
heterogeneous !< calculate field of rates
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: &
field0, & !< data of previous step
field !< data of current step
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: &
utilities_calculateRate
if (heterogeneous) then
utilities_calculateRate = (field-field0) / dt
else
utilities_calculateRate = spread(spread(spread(avRate,3,grid(1)),4,grid(2)),5,grid3)
endif
if (heterogeneous) then
utilities_calculateRate = (field-field0) / dt
else
utilities_calculateRate = spread(spread(spread(avRate,3,grid(1)),4,grid(2)),5,grid3)
endif
end function utilities_calculateRate