removed old standalone AL solver and introduced new structure for solver zoo
This commit is contained in:
parent
9078d70af0
commit
ad3f9d8050
|
@ -585,7 +585,7 @@ program DAMASK_spectral
|
|||
if(memory_efficient) then ! allocate just single fourth order tensor
|
||||
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
|
||||
else ! precalculation of gamma_hat field
|
||||
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
|
||||
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source = 0.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
|
|
|
@ -0,0 +1,409 @@
|
|||
! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
|
||||
!
|
||||
! This file is part of DAMASK,
|
||||
! the Düsseldorf Advanced Material Simulation Kit.
|
||||
!
|
||||
! DAMASK is free software: you can redistribute it and/or modify
|
||||
! it under the terms of the GNU General Public License as published by
|
||||
! the Free Software Foundation, either version 3 of the License, or
|
||||
! (at your option) any later version.
|
||||
!
|
||||
! DAMASK is distributed in the hope that it will be useful,
|
||||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
! GNU General Public License for more details.
|
||||
!
|
||||
! You should have received a copy of the GNU General Public License
|
||||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||||
!
|
||||
!##################################################################################################
|
||||
!* $Id$
|
||||
!##################################################################################################
|
||||
! Material subroutine for BVP solution using spectral method
|
||||
!
|
||||
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
||||
!
|
||||
! written by P. Eisenlohr,
|
||||
! F. Roters,
|
||||
! L. Hantcherli,
|
||||
! W.A. Counts,
|
||||
! D.D. Tjahjanto,
|
||||
! C. Kords,
|
||||
! M. Diehl,
|
||||
! R. Lebensohn
|
||||
!
|
||||
! MPI fuer Eisenforschung, Duesseldorf
|
||||
|
||||
#include "spectral_quit.f90"
|
||||
|
||||
program DAMASK_spectral
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
pReal
|
||||
|
||||
use IO, only: &
|
||||
IO_error,&
|
||||
IO_write_jobBinaryFile
|
||||
|
||||
use math
|
||||
|
||||
use FEsolving, only: &
|
||||
restartWrite, &
|
||||
restartInc
|
||||
|
||||
use homogenization, only: &
|
||||
materialpoint_sizeResults, &
|
||||
materialpoint_results
|
||||
|
||||
use DAMASK_spectralSovler
|
||||
|
||||
implicit none
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
integer(pInt) :: i, j, k, l, m, n, p, errorID
|
||||
|
||||
|
||||
call DAMASK_interface_init
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ' Working Directory: ',trim(getSolverWorkingDirectoryName())
|
||||
write(6,'(a)') ' Solver Job Name: ',trim(getSolverJobName())
|
||||
write(6,'(a)') ''
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reading the load case file and allocate data structure containing load cases
|
||||
call IO_open_file(myUnit,trim(loadCaseFile))
|
||||
rewind(myUnit)
|
||||
do
|
||||
read(myUnit,'(a1024)',END = 100) line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
positions = IO_stringPos(line,maxNchunksLoadcase)
|
||||
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
|
||||
select case (IO_lc(IO_stringValue(line,positions,i)))
|
||||
case('l','velocitygrad','velgrad','velocitygradient')
|
||||
N_l = N_l + 1_pInt
|
||||
case('fdot','dotf')
|
||||
N_Fdot = N_Fdot + 1_pInt
|
||||
case('t','time','delta')
|
||||
N_t = N_t + 1_pInt
|
||||
case('n','incs','increments','steps','logincs','logincrements','logsteps')
|
||||
N_n = N_n + 1_pInt
|
||||
end select
|
||||
enddo ! count all identifiers to allocate memory and do sanity check
|
||||
enddo
|
||||
|
||||
100 N_Loadcases = N_n
|
||||
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
|
||||
call IO_error(error_ID=837_pInt,ext_msg = trim(loadCaseFile)) ! error message for incomplete loadcase
|
||||
allocate (bc(N_Loadcases))
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reading the load case and assign values to the allocated data structure
|
||||
rewind(myUnit)
|
||||
|
||||
do
|
||||
read(myUnit,'(a1024)',END = 101) line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
loadcase = loadcase + 1_pInt
|
||||
positions = IO_stringPos(line,maxNchunksLoadcase)
|
||||
do j = 1_pInt,maxNchunksLoadcase
|
||||
select case (IO_lc(IO_stringValue(line,positions,j)))
|
||||
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
|
||||
bc(loadcase)%velGradApplied = &
|
||||
(IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.&
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.&
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
|
||||
temp_valueVector = 0.0_pReal
|
||||
temp_maskVector = .false.
|
||||
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
|
||||
do k = 1_pInt,9_pInt
|
||||
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
||||
enddo
|
||||
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
|
||||
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
|
||||
case('p','pk1','piolakirchhoff','stress')
|
||||
temp_valueVector = 0.0_pReal
|
||||
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =&
|
||||
IO_stringValue(line,positions,j+k) /= '*'
|
||||
do k = 1_pInt,9_pInt
|
||||
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =&
|
||||
IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%stress matrix
|
||||
enddo
|
||||
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3]))
|
||||
bc(loadcase)%stress = math_plain9to33(temp_valueVector)
|
||||
case('t','time','delta') ! increment time
|
||||
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
|
||||
case('temp','temperature') ! starting temperature
|
||||
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
|
||||
case('n','incs','increments','steps') ! number of increments
|
||||
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
||||
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
|
||||
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
||||
bc(loadcase)%logscale = 1_pInt
|
||||
case('f','freq','frequency','outputfreq') ! frequency of result writings
|
||||
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
|
||||
case('r','restart','restartwrite') ! frequency of writing restart information
|
||||
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
|
||||
case('guessreset','dropguessing')
|
||||
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
|
||||
case('euler') ! rotation of loadcase given in euler angles
|
||||
p = 0_pInt ! assuming values given in radians
|
||||
l = 1_pInt ! assuming keyword indicating degree/radians
|
||||
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
|
||||
case('deg','degree')
|
||||
p = 1_pInt ! for conversion from degree to radian
|
||||
case('rad','radian')
|
||||
case default
|
||||
l = 0_pInt ! immediately reading in angles, assuming radians
|
||||
end select
|
||||
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = &
|
||||
IO_floatValue(line,positions,j+l+k) * real(p,pReal) * inRad
|
||||
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
|
||||
case('rotation','rot') ! assign values for the rotation of loadcase matrix
|
||||
temp_valueVector = 0.0_pReal
|
||||
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
||||
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
|
||||
end select
|
||||
enddo; enddo
|
||||
101 close(myUnit)
|
||||
|
||||
!-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init
|
||||
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
|
||||
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! get resolution, dimension, homogenization and variables derived from resolution
|
||||
res = mesh_spectral_getResolution()
|
||||
geomdim = mesh_spectral_getDimension()
|
||||
homog = mesh_spectral_getHomogenization()
|
||||
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
||||
Npoints = res(1)*res(2)*res(3)
|
||||
wgt = 1.0_pReal/real(Npoints, pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! output of geometry
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'DAMASK spectral:'
|
||||
write(6,'(a)') 'The spectral method boundary value problem solver for'
|
||||
write(6,'(a)') 'the Duesseldorf Advanced Material Simulation Kit'
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'geometry file: ',trim(geometryFile)
|
||||
write(6,'(a)') '============================================================='
|
||||
write(6,'(a,3(i12 ))') 'resolution a b c:', res
|
||||
write(6,'(a,3(f12.5))') 'dimension x y z:', geomdim
|
||||
write(6,'(a,i5)') 'homogenization: ',homog
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'loadcase file: ',trim(loadCaseFile)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! consistency checks and output of load case
|
||||
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase
|
||||
errorID = 0_pInt
|
||||
do loadcase = 1_pInt, N_Loadcases
|
||||
write (loadcase_string, '(i6)' ) loadcase
|
||||
|
||||
write(6,'(a)') '============================================================='
|
||||
write(6,'(a,i6)') 'loadcase: ', loadcase
|
||||
|
||||
if (.not. bc(loadcase)%followFormerTrajectory) write(6,'(a)') 'drop guessing along trajectory'
|
||||
if (bc(loadcase)%velGradApplied) then
|
||||
do j = 1_pInt, 3_pInt
|
||||
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
|
||||
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
|
||||
enddo
|
||||
write(6,'(a)')'velocity gradient:'
|
||||
else
|
||||
write(6,'(a)')'deformation gradient rate:'
|
||||
endif
|
||||
write (6,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),&
|
||||
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation))
|
||||
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' stress / GPa:',&
|
||||
1e-9_pReal*merge(math_transpose33(bc(loadcase)%stress),&
|
||||
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress))
|
||||
if (any(bc(loadcase)%rotation /= math_I3)) &
|
||||
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
|
||||
math_transpose33(bc(loadcase)%rotation)
|
||||
write(6,'(a,f12.6)') 'temperature:', bc(loadcase)%temperature
|
||||
write(6,'(a,f12.6)') 'time: ', bc(loadcase)%time
|
||||
write(6,'(a,i5)') 'increments: ', bc(loadcase)%incs
|
||||
write(6,'(a,i5)') 'output frequency: ', bc(loadcase)%outputfrequency
|
||||
write(6,'(a,i5)') 'restart frequency: ', bc(loadcase)%restartfrequency
|
||||
|
||||
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
|
||||
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
|
||||
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
|
||||
errorID = 838_pInt ! no rotation is allowed by stress BC
|
||||
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))&
|
||||
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
|
||||
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)&
|
||||
errorID = 846_pInt ! given rotation matrix contains strain
|
||||
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
|
||||
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
|
||||
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
|
||||
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
|
||||
enddo
|
||||
!##################################################################################################
|
||||
! Loop over loadcases defined in the loadcase file
|
||||
!##################################################################################################
|
||||
do loadcase = 1_pInt, N_Loadcases
|
||||
time0 = time ! loadcase start time
|
||||
if (bc(loadcase)%followFormerTrajectory .and. &
|
||||
(restartInc < totalIncsCounter .or. &
|
||||
restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable
|
||||
guessmode = 1.0_pReal
|
||||
else
|
||||
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! arrays for mixed boundary conditions
|
||||
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
|
||||
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
|
||||
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
|
||||
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
|
||||
!##################################################################################################
|
||||
! loop oper incs defined in input file for current loadcase
|
||||
!##################################################################################################
|
||||
do inc = 1_pInt, bc(loadcase)%incs
|
||||
totalIncsCounter = totalIncsCounter + 1_pInt
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! forwarding time
|
||||
timeinc_old = timeinc
|
||||
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
|
||||
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
|
||||
else
|
||||
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
|
||||
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
|
||||
else ! not-1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
|
||||
endif
|
||||
else ! not-1st loadcase of logarithmic scale
|
||||
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal))&
|
||||
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal)) )
|
||||
endif
|
||||
endif
|
||||
time = time + timeinc
|
||||
|
||||
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
|
||||
if (bc(loadcase)%velGradApplied) then ! calculate deltaF_aim from given L and current F
|
||||
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
|
||||
else ! deltaF_aim = fDot *timeinc where applicable
|
||||
deltaF_aim = timeinc * mask_defgrad * bc(loadcase)%deformation
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! winding forward of deformation aim in loadcase system
|
||||
temp33_Real = F_aim
|
||||
F_aim = F_aim &
|
||||
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
|
||||
+ deltaF_aim
|
||||
F_aim_lastInc = temp33_Real
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! update local deformation gradient and coordinates
|
||||
deltaF_aim = math_rotate_backward33(deltaF_aim,bc(loadcase)%rotation)
|
||||
call
|
||||
|
||||
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,bc(loadcase)%rotation),& ! calculate current coordinates
|
||||
1.0_pReal,F_lastInc,coordinates)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate reduced compliance
|
||||
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
|
||||
C_lastInc = math_rotate_forward3333(C,bc(loadcase)%rotation) ! calculate stiffness from former inc
|
||||
temp99_Real = math_Plain3333to99(C_lastInc)
|
||||
k = 0_pInt ! build reduced stiffness
|
||||
do n = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
c_reduced(k,j) = temp99_Real(n,m)
|
||||
endif; enddo; endif; enddo
|
||||
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
|
||||
if(errmatinv) call IO_error(error_ID=400_pInt)
|
||||
temp99_Real = 0.0_pReal ! build full compliance
|
||||
k = 0_pInt
|
||||
do n = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
temp99_Real(n,m) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
S_lastInc = (math_Plain99to3333(temp99_Real))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new increment
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
|
||||
|
||||
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
||||
iter = 0_pInt
|
||||
err_div = huge(err_div_tol) ! go into loop
|
||||
|
||||
converged = solution(mySolver,ForwardFields(solver,deltaF_aim,timeinc/timeinc_old,guessmode))
|
||||
|
||||
CPFEM_mode = 1_pInt ! winding forward
|
||||
C = C * wgt
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
|
||||
notConvergedCounter = notConvergedCounter + 1_pInt
|
||||
else
|
||||
convergedCounter = convergedCounter + 1_pInt
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
|
||||
endif
|
||||
|
||||
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... writing results to file ......................................'
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
||||
flush(538)
|
||||
endif
|
||||
|
||||
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
||||
mod(inc,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
|
||||
restartInc=totalIncsCounter
|
||||
restartWrite = .true.
|
||||
write(6,'(a)') 'writing converged results for restart'
|
||||
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F)) ! writing deformation gradient field to file
|
||||
write (777,rec=1) F
|
||||
close (777)
|
||||
call IO_write_jobBinaryFile(777,'C',size(C))
|
||||
write (777,rec=1) C
|
||||
close(777)
|
||||
endif
|
||||
|
||||
endif ! end calculation/forwarding
|
||||
enddo ! end looping over incs in current loadcase
|
||||
deallocate(c_reduced)
|
||||
deallocate(s_reduced)
|
||||
enddo ! end looping over loadcases
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
|
||||
notConvergedCounter + convergedCounter, ' (', &
|
||||
real(convergedCounter, pReal)/&
|
||||
real(notConvergedCounter + convergedCounter,pReal)*100.0_pReal, &
|
||||
' %) increments converged!'
|
||||
close(538)
|
||||
if (notConvergedCounter > 0_pInt) call quit(3_pInt)
|
||||
call quit(0_pInt)
|
||||
end program DAMASK_spectral
|
|
@ -0,0 +1,924 @@
|
|||
! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
|
||||
!
|
||||
! This file is part of DAMASK,
|
||||
! the Düsseldorf Advanced Material Simulation Kit.
|
||||
!
|
||||
! DAMASK is free software: you can redistribute it and/or modify
|
||||
! it under the terms of the GNU General Public License as published by
|
||||
! the Free Software Foundation, either version 3 of the License, or
|
||||
! (at your option) any later version.
|
||||
!
|
||||
! DAMASK is distributed in the hope that it will be useful,
|
||||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
! GNU General Public License for more details.
|
||||
!
|
||||
! You should have received a copy of the GNU General Public License
|
||||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||||
!
|
||||
!##################################################################################################
|
||||
!* $Id$
|
||||
!##################################################################################################
|
||||
! Material subroutine for BVP solution using spectral method
|
||||
!
|
||||
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
||||
!
|
||||
! written by P. Eisenlohr,
|
||||
! F. Roters,
|
||||
! L. Hantcherli,
|
||||
! W.A. Counts,
|
||||
! D.D. Tjahjanto,
|
||||
! C. Kords,
|
||||
! M. Diehl,
|
||||
! R. Lebensohn
|
||||
!
|
||||
! MPI fuer Eisenforschung, Duesseldorf
|
||||
|
||||
#include "spectral_quit.f90"
|
||||
|
||||
program DAMASK_spectral
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use DAMASK_interface, only: &
|
||||
DAMASK_interface_init, &
|
||||
loadCaseFile, &
|
||||
geometryFile, &
|
||||
getSolverWorkingDirectoryName, &
|
||||
getSolverJobName, &
|
||||
appendToOutFile
|
||||
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
pReal, &
|
||||
DAMASK_NaN
|
||||
|
||||
use IO, only: &
|
||||
IO_isBlank, &
|
||||
IO_open_file, &
|
||||
IO_stringPos, &
|
||||
IO_stringValue, &
|
||||
IO_floatValue, &
|
||||
IO_intValue, &
|
||||
IO_error, &
|
||||
IO_lc, &
|
||||
IO_read_jobBinaryFile, &
|
||||
IO_write_jobBinaryFile
|
||||
|
||||
use debug, only: &
|
||||
debug_level, &
|
||||
debug_spectral, &
|
||||
debug_levelBasic, &
|
||||
debug_spectralDivergence, &
|
||||
debug_spectralRestart, &
|
||||
debug_spectralFFTW, &
|
||||
debug_reset, &
|
||||
debug_info
|
||||
|
||||
use math
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
mesh_spectral_getDimension, &
|
||||
mesh_spectral_getHomogenization
|
||||
|
||||
use CPFEM, only: &
|
||||
CPFEM_general, &
|
||||
CPFEM_initAll
|
||||
|
||||
use FEsolving, only: &
|
||||
restartWrite, &
|
||||
restartInc
|
||||
|
||||
use numerics, only: &
|
||||
err_div_tol, &
|
||||
err_stress_tolrel, &
|
||||
err_stress_tolabs, &
|
||||
rotation_tol, &
|
||||
itmax,&
|
||||
itmin, &
|
||||
memory_efficient, &
|
||||
divergence_correction, &
|
||||
DAMASK_NumThreadsInt, &
|
||||
fftw_planner_flag, &
|
||||
fftw_timelimit
|
||||
|
||||
use homogenization, only: &
|
||||
materialpoint_sizeResults, &
|
||||
materialpoint_results
|
||||
|
||||
implicit none
|
||||
|
||||
#ifdef PETSC
|
||||
#include <finclude/petscsys.h>
|
||||
#include <finclude/petscvec.h>
|
||||
#include <finclude/petscsnes.h>
|
||||
#include <finclude/petscvec.h90>
|
||||
#include <finclude/petscsnes.h90>
|
||||
#endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables related to information from load case and geom file
|
||||
real(pReal), dimension(9) :: &
|
||||
temp_valueVector !> temporarily from loadcase file when reading in tensors
|
||||
logical, dimension(9) :: &
|
||||
temp_maskVector !> temporarily from loadcase file when reading in tensors
|
||||
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
|
||||
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
||||
1_pInt, & ! dropguessing
|
||||
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
|
||||
myUnit = 234_pInt
|
||||
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
|
||||
|
||||
integer(pInt) :: &
|
||||
N_l = 0_pInt, &
|
||||
N_t = 0_pInt, &
|
||||
N_n = 0_pInt, &
|
||||
N_Fdot = 0_pInt, &
|
||||
Npoints,& ! number of Fourier points
|
||||
homog, & ! homogenization scheme used
|
||||
res1_red ! to store res(1)/2 +1
|
||||
|
||||
character(len=1024) :: &
|
||||
line
|
||||
|
||||
type bc_type
|
||||
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
|
||||
stress = 0.0_pReal, & ! stress BC (if applicable)
|
||||
rotation = math_I3 ! rotation of BC (if applicable)
|
||||
real(pReal) :: time = 0.0_pReal, & ! length of increment
|
||||
temperature = 300.0_pReal ! isothermal starting conditions
|
||||
integer(pInt) :: incs = 0_pInt, & ! number of increments
|
||||
outputfrequency = 1_pInt, & ! frequency of result writes
|
||||
restartfrequency = 0_pInt, & ! frequency of restart writes
|
||||
logscale = 0_pInt ! linear/logaritmic time inc flag
|
||||
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
|
||||
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
|
||||
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
|
||||
maskStress = .false. ! mask of stress boundary conditions
|
||||
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
|
||||
end type
|
||||
|
||||
type(bc_type), allocatable, dimension(:) :: bc
|
||||
|
||||
|
||||
real(pReal) :: wgt
|
||||
real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction
|
||||
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: &
|
||||
P_av, &
|
||||
F_aim = math_I3, &
|
||||
F_aim_lastInc = math_I3, &
|
||||
mask_stress, &
|
||||
mask_defgrad, &
|
||||
deltaF_aim, &
|
||||
F_aim_lab, &
|
||||
F_aim_lab_lastIter, &
|
||||
P_av_lab
|
||||
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
dPdF, &
|
||||
C_ref = 0.0_pReal, &
|
||||
C = 0.0_pReal, &
|
||||
S_lastInc, &
|
||||
C_lastInc ! stiffness and compliance
|
||||
|
||||
real(pReal), dimension(6) :: sigma ! cauchy stress
|
||||
real(pReal), dimension(6,6) :: dsde
|
||||
real(pReal), dimension(9,9) :: temp99_Real ! compliance and stiffness in matrix notation
|
||||
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
||||
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! pointwise data
|
||||
type(C_PTR) :: tensorField ! field in real an fourier space
|
||||
real(pReal), dimension(:,:,:,:,:), pointer :: P_real, deltaF_real ! field in real space (pointer)
|
||||
|
||||
complex(pReal), dimension(:,:,:,:,:), pointer :: P_fourier,deltaF_fourier ! field in fourier space (pointer)
|
||||
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information for spectral method and FFTW
|
||||
type(C_PTR) :: plan_stress, plan_correction ! plans for fftw
|
||||
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
||||
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
|
||||
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
complex(pReal), dimension(3) :: temp3_Complex
|
||||
complex(pReal), dimension(3,3) :: temp33_Complex
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
integer(pInt) :: i, j, k, l, m, n, p, errorID
|
||||
integer(pInt) :: N_Loadcases, loadcase = 0_pInt, inc, iter, ielem, CPFEM_mode=1_pInt, &
|
||||
ierr, totalIncsCounter = 0_pInt,&
|
||||
notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
|
||||
logical :: errmatinv
|
||||
real(pReal) :: defgradDet
|
||||
character(len=6) :: loadcase_string
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables controlling debugging
|
||||
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables for additional output due to general debugging
|
||||
real(pReal) :: defgradDetMax, defgradDetMin, maxCorrectionSym, maxCorrectionSkew
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables for additional output of divergence calculations
|
||||
type(C_PTR) :: divergence, plan_divergence
|
||||
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
|
||||
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: divergence_post
|
||||
real(pReal) :: pstress_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
|
||||
err_div_max, err_real_div_max
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables for debugging fft using a scalar field
|
||||
type(C_PTR) :: scalarField_realC, scalarField_fourierC,&
|
||||
plan_scalarField_forth, plan_scalarField_back
|
||||
complex(pReal), dimension(:,:,:), pointer :: scalarField_real
|
||||
complex(pReal), dimension(:,:,:), pointer :: scalarField_fourier
|
||||
integer(pInt) :: row, column
|
||||
|
||||
!##################################################################################################
|
||||
! reading of information from load case file and geometry file
|
||||
!##################################################################################################
|
||||
#ifdef PETSC
|
||||
integer :: ierr_psc
|
||||
call PetscInitialize(PETSC_NULL_CHARACTER, ierr_psc)
|
||||
#endif
|
||||
call DAMASK_interface_init
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ''
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! debugging parameters
|
||||
debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0
|
||||
debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0
|
||||
debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0
|
||||
debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0
|
||||
|
||||
!##################################################################################################
|
||||
! initialization
|
||||
!##################################################################################################
|
||||
|
||||
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
|
||||
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
||||
allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally
|
||||
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
|
||||
call c_f_pointer(tensorField, P_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
|
||||
call c_f_pointer(tensorField, deltaF_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
|
||||
call c_f_pointer(tensorField, P_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
|
||||
call c_f_pointer(tensorField, deltaF_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! general initialization of fftw (see manual on fftw.org for more details)
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
|
||||
!$ if(DAMASK_NumThreadsInt > 0_pInt) then
|
||||
!$ ierr = fftw_init_threads()
|
||||
!$ if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
|
||||
!$ call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
|
||||
!$ endif
|
||||
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! creating plans
|
||||
plan_stress = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
|
||||
P_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
||||
P_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
||||
|
||||
plan_correction =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
|
||||
deltaF_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,&
|
||||
deltaF_real,[ res(3),res(2) ,res(1)+2_pInt],&
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! depending on (debug) options, allocate more memory and create additional plans
|
||||
if (debugDivergence) then
|
||||
divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T))
|
||||
call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3])
|
||||
call c_f_pointer(divergence, divergence_fourier, [ res1_red, res(2),res(3),3])
|
||||
allocate (divergence_post(res(1),res(2),res(3),3)); divergence_post = 0.0_pReal
|
||||
plan_divergence = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],3,&
|
||||
divergence_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,&
|
||||
divergence_real,[ res(3),res(2) ,res(1)+2_pInt],&
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
||||
endif
|
||||
|
||||
if (debugFFTW) then
|
||||
scalarField_realC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T)) ! do not do an inplace transform
|
||||
scalarField_fourierC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T))
|
||||
call c_f_pointer(scalarField_realC, scalarField_real, [res(1),res(2),res(3)])
|
||||
call c_f_pointer(scalarField_fourierC, scalarField_fourier, [res(1),res(2),res(3)])
|
||||
plan_scalarField_forth = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
|
||||
scalarField_real,scalarField_fourier,-1,fftw_planner_flag)
|
||||
plan_scalarField_back = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
|
||||
scalarField_fourier,scalarField_real,+1,fftw_planner_flag)
|
||||
endif
|
||||
|
||||
if (debugGeneral) write(6,'(a)') 'FFTW initialized'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
||||
if (divergence_correction) then
|
||||
do i = 1_pInt, 3_pInt
|
||||
if (i /= minloc(geomdim,1) .and. i /= maxloc(geomdim,1)) virt_dim = geomdim/geomdim(i)
|
||||
enddo
|
||||
else
|
||||
virt_dim = geomdim
|
||||
endif
|
||||
|
||||
do k = 1_pInt, res(3)
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim
|
||||
enddo; enddo; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! in case of no restart get reference material stiffness and init fields to no deformation
|
||||
if (restartInc == 1_pInt) then
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
F(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) - geomdim/real(2_pInt*res,pReal)
|
||||
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
||||
0.0_pReal,ielem,1_pInt,sigma,dsde,P_real(i,j,k,1:3,1:3),dPdF)
|
||||
C = C + dPdF
|
||||
enddo; enddo; enddo
|
||||
C = C * wgt
|
||||
C_ref = C
|
||||
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
|
||||
write (777,rec=1) C_ref
|
||||
close(777)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! restore deformation gradient and stiffness from saved state
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
close (777)
|
||||
F_lastInc = F
|
||||
F_aim = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F_aim = F_aim + F(i,j,k,1:3,1:3) ! calculating old average deformation
|
||||
enddo; enddo; enddo
|
||||
F_aim = F_aim * wgt
|
||||
F_aim_lastInc = F_aim
|
||||
coordinates = 0.0 ! change it later!!!
|
||||
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
|
||||
read (777,rec=1) C_ref
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'C',trim(getSolverJobName()),size(C))
|
||||
read (777,rec=1) C
|
||||
close (777)
|
||||
CPFEM_mode = 2_pInt
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the gamma operator
|
||||
if(memory_efficient) then ! allocate just single fourth order tensor
|
||||
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
|
||||
else ! precalculation of gamma_hat field
|
||||
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source = 0.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
|
||||
gamma_hat(i,j,k, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! write header of output file
|
||||
if (appendToOutFile) then
|
||||
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut',&
|
||||
form='UNFORMATTED', position='APPEND', status='OLD')
|
||||
else
|
||||
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut',&
|
||||
form='UNFORMATTED',status='REPLACE')
|
||||
write(538) 'load', trim(loadCaseFile)
|
||||
write(538) 'workingdir', trim(getSolverWorkingDirectoryName())
|
||||
write(538) 'geometry', trim(geometryFile)
|
||||
write(538) 'resolution', res
|
||||
write(538) 'dimension', geomdim
|
||||
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
|
||||
write(538) 'loadcases', N_Loadcases
|
||||
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
|
||||
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
|
||||
write(538) 'logscales', bc(1:N_Loadcases)%logscale
|
||||
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
|
||||
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
|
||||
write(538) 'eoh' ! end of header
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results
|
||||
if (debugGeneral) write(6,'(a)') 'Header of result file written out'
|
||||
endif
|
||||
|
||||
|
||||
!##################################################################################################
|
||||
! Loop over loadcases defined in the loadcase file
|
||||
!##################################################################################################
|
||||
do loadcase = 1_pInt, N_Loadcases
|
||||
time0 = time ! loadcase start time
|
||||
if (bc(loadcase)%followFormerTrajectory .and. &
|
||||
(restartInc < totalIncsCounter .or. &
|
||||
restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable
|
||||
guessmode = 1.0_pReal
|
||||
else
|
||||
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! arrays for mixed boundary conditions
|
||||
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
|
||||
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
|
||||
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
|
||||
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
|
||||
!##################################################################################################
|
||||
! loop oper incs defined in input file for current loadcase
|
||||
!##################################################################################################
|
||||
do inc = 1_pInt, bc(loadcase)%incs
|
||||
totalIncsCounter = totalIncsCounter + 1_pInt
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! forwarding time
|
||||
timeinc_old = timeinc
|
||||
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
|
||||
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
|
||||
else
|
||||
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
|
||||
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
|
||||
else ! not-1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
|
||||
endif
|
||||
else ! not-1st loadcase of logarithmic scale
|
||||
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal))&
|
||||
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal)) )
|
||||
endif
|
||||
endif
|
||||
time = time + timeinc
|
||||
|
||||
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
|
||||
if (bc(loadcase)%velGradApplied) then ! calculate deltaF_aim from given L and current F
|
||||
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
|
||||
else ! deltaF_aim = fDot *timeinc where applicable
|
||||
deltaF_aim = timeinc * mask_defgrad * bc(loadcase)%deformation
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! winding forward of deformation aim in loadcase system
|
||||
temp33_Real = F_aim
|
||||
F_aim = F_aim &
|
||||
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
|
||||
+ deltaF_aim
|
||||
F_aim_lastInc = temp33_Real
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! update local deformation gradient and coordinates
|
||||
deltaF_aim = math_rotate_backward33(deltaF_aim,bc(loadcase)%rotation)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
temp33_Real = F(i,j,k,1:3,1:3)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
||||
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
|
||||
*timeinc/timeinc_old &
|
||||
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
|
||||
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
|
||||
enddo; enddo; enddo
|
||||
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,bc(loadcase)%rotation),& ! calculate current coordinates
|
||||
1.0_pReal,F_lastInc,coordinates)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate reduced compliance
|
||||
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
|
||||
C_lastInc = math_rotate_forward3333(C,bc(loadcase)%rotation) ! calculate stiffness from former inc
|
||||
temp99_Real = math_Plain3333to99(C_lastInc)
|
||||
k = 0_pInt ! build reduced stiffness
|
||||
do n = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
c_reduced(k,j) = temp99_Real(n,m)
|
||||
endif; enddo; endif; enddo
|
||||
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
|
||||
if(errmatinv) call IO_error(error_ID=400_pInt)
|
||||
temp99_Real = 0.0_pReal ! build full compliance
|
||||
k = 0_pInt
|
||||
do n = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
temp99_Real(n,m) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
S_lastInc = (math_Plain99to3333(temp99_Real))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new increment
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
|
||||
|
||||
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
||||
iter = 0_pInt
|
||||
err_div = huge(err_div_tol) ! go into loop
|
||||
|
||||
!##################################################################################################
|
||||
! convergence loop (looping over iterations)
|
||||
!##################################################################################################
|
||||
do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol))&
|
||||
.or. iter < itmin)
|
||||
iter = iter + 1_pInt
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new iteration
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
write(6,'(6(a,i6.6))') 'Loadcase ',loadcase,' Inc. ',inc,'/',bc(loadcase)%incs,&
|
||||
' @ Iter. ',itmin,' < ',iter,' < ',itmax
|
||||
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
|
||||
math_transpose33(F_aim)
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... update stress field P(F) .....................................'
|
||||
if (restartWrite) write(6,'(a)') 'writing restart info for last increment'
|
||||
F_aim_lab_lastIter = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! evaluate constitutive response
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,&
|
||||
P_real(i,j,k,1:3,1:3),dPdF)
|
||||
enddo; enddo; enddo
|
||||
|
||||
P_real = 0.0_pReal ! needed because of the padding for FFTW
|
||||
C = 0.0_pReal
|
||||
ielem = 0_pInt
|
||||
call debug_reset()
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
|
||||
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde, &
|
||||
P_real(i,j,k,1:3,1:3),dPdF)
|
||||
CPFEM_mode = 2_pInt
|
||||
C = C + dPdF
|
||||
enddo; enddo; enddo
|
||||
call debug_info()
|
||||
! for test of regridding
|
||||
! if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
||||
! mod(inc-1,bc(loadcase)%restartFrequency) == 0_pInt .and. &
|
||||
! restartInc/=inc) call quit(-1*(restartInc+1)) ! trigger exit to regrid
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! copy one component of the stress field to to a single FT and check for mismatch
|
||||
if (debugFFTW) then
|
||||
row = (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
|
||||
column = (mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
|
||||
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
|
||||
cmplx(P_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! call function to calculate divergence from math (for post processing) to check results
|
||||
if (debugDivergence) &
|
||||
call divergence_fft(res,virt_dim,3_pInt,&
|
||||
P_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) ! padding
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the FT because it simplifies calculation of average stress in real space also
|
||||
call fftw_execute_dft_r2c(plan_stress,P_real,P_fourier)
|
||||
|
||||
P_av_lab = real(P_fourier(1,1,1,1:3,1:3),pReal)*wgt
|
||||
P_av = math_rotate_forward33(P_av_lab,bc(loadcase)%rotation)
|
||||
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
|
||||
math_transpose33(P_av)/1.e6_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 FT results
|
||||
if (debugFFTW) then
|
||||
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
|
||||
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
|
||||
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
|
||||
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
|
||||
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! removing highest frequencies
|
||||
P_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
P_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
if(res(3)>1_pInt) &
|
||||
P_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
|
||||
err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
|
||||
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
|
||||
' (',err_stress,' Pa)'
|
||||
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - bc(loadcase)%stress))) ! residual on given stress components
|
||||
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
|
||||
else
|
||||
err_stress_tol = +huge(1.0_pReal)
|
||||
endif
|
||||
|
||||
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! actual spectral method
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... calculating equilibrium with spectral method .................'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculating RMS divergence criterion in Fourier space
|
||||
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(P_av_lab,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
|
||||
math_transpose33(P_av_lab)))))
|
||||
err_div_RMS = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
|
||||
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
err_div_RMS = err_div_RMS &
|
||||
+ 2.0_pReal*(sum (real(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
+sum(aimag(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),&
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
|
||||
enddo
|
||||
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
|
||||
+ sum( real(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum( real(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
|
||||
enddo; enddo
|
||||
|
||||
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
|
||||
|
||||
if (err_div_RMS/pstress_av_L2 > err_div &
|
||||
.and. err_stress < err_stress_tol &
|
||||
.and. iter >= itmin ) then
|
||||
write(6,'(a)') 'Increasing divergence, stopping iterations'
|
||||
iter = itmax
|
||||
endif
|
||||
err_div = err_div_RMS/pstress_av_L2 ! criterion to stop iterations
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate additional divergence criteria and report
|
||||
if (debugDivergence) then ! calculate divergence again
|
||||
err_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
temp3_Complex = math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
|
||||
xi(1:3,i,j,k))*TWOPIIMG
|
||||
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
|
||||
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
|
||||
|
||||
err_real_div_RMS = 0.0_pReal
|
||||
err_post_div_RMS = 0.0_pReal
|
||||
err_real_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
|
||||
enddo; enddo; enddo
|
||||
|
||||
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
|
||||
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
|
||||
err_real_div_max = sqrt( err_real_div_max) ! max in real space
|
||||
err_div_max = sqrt( err_div_max) ! max in Fourier space
|
||||
|
||||
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
|
||||
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
|
||||
endif
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
|
||||
' (',err_div,' N/m³)'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! to the actual spectral method calculation (mechanical equilibrium)
|
||||
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
|
||||
gamma_hat(1,1,1, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
|
||||
P_fourier(i,j,k,1:3,1:3))
|
||||
deltaF_fourier(i,j,k,1:3,1:3) = temp33_Complex
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
|
||||
else ! use precalculated gamma-operator
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
||||
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
|
||||
P_fourier(i,j,k,1:3,1:3))
|
||||
deltaF_fourier(i,j,k, 1:3,1:3) = temp33_Complex
|
||||
enddo; enddo; enddo
|
||||
|
||||
endif
|
||||
deltaF_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab_lastIter - F_aim_lab) & ! assign (negative) average deformation gradient change to zero frequency (real part)
|
||||
* real(Npoints,pReal),0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
scalarField_fourier(i,j,k) = deltaF_fourier(i,j,k,row,column)
|
||||
enddo; enddo; enddo
|
||||
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
|
||||
m = 1_pInt
|
||||
do k = 1_pInt, res(3)
|
||||
n = 1_pInt
|
||||
do j = 1_pInt, res(2)
|
||||
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
|
||||
if(n == 1_pInt) n = res(2) + 1_pInt
|
||||
n = n-1_pInt
|
||||
enddo
|
||||
if(m == 1_pInt) m = res(3) + 1_pInt
|
||||
m = m -1_pInt
|
||||
enddo; enddo
|
||||
endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the inverse FT
|
||||
call fftw_execute_dft_c2r(plan_correction,deltaF_fourier,deltaF_real) ! back transform of fluct deformation gradient
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
|
||||
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
|
||||
write(6,'(a,es11.4)') 'max iFT relative error = ',&
|
||||
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
|
||||
deltaF_real(1:res(1),1:res(2),1:res(3),row,column))/&
|
||||
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate some additional output
|
||||
if(debugGeneral) then
|
||||
maxCorrectionSkew = 0.0_pReal
|
||||
maxCorrectionSym = 0.0_pReal
|
||||
temp33_Real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
maxCorrectionSym = max(maxCorrectionSym,&
|
||||
maxval(math_symmetric33(deltaF_real(i,j,k,1:3,1:3))))
|
||||
maxCorrectionSkew = max(maxCorrectionSkew,&
|
||||
maxval(math_skew33(deltaF_real(i,j,k,1:3,1:3))))
|
||||
temp33_Real = temp33_Real + deltaF_real(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
|
||||
maxCorrectionSym*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
|
||||
maxCorrectionSkew*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
|
||||
maxval(math_symmetric33(temp33_real))/&
|
||||
maxval(math_skew33(temp33_real))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! updated deformation gradient
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - deltaF_real(i,j,k,1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
|
||||
enddo; enddo; enddo
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate bounds of det(F) and report
|
||||
if(debugGeneral) then
|
||||
defgradDetMax = -huge(1.0_pReal)
|
||||
defgradDetMin = +huge(1.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
defgradDet = math_det33(F(i,j,k,1:3,1:3))
|
||||
defgradDetMax = max(defgradDetMax,defgradDet)
|
||||
defgradDetMin = min(defgradDetMin,defgradDet)
|
||||
enddo; enddo; enddo
|
||||
|
||||
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
|
||||
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
|
||||
endif
|
||||
|
||||
enddo ! end looping when convergency is achieved
|
||||
|
||||
CPFEM_mode = 1_pInt ! winding forward
|
||||
C = C * wgt
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
|
||||
notConvergedCounter = notConvergedCounter + 1_pInt
|
||||
else
|
||||
convergedCounter = convergedCounter + 1_pInt
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
|
||||
endif
|
||||
|
||||
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... writing results to file ......................................'
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
||||
flush(538)
|
||||
endif
|
||||
|
||||
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
||||
mod(inc,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
|
||||
restartInc=totalIncsCounter
|
||||
restartWrite = .true.
|
||||
write(6,'(a)') 'writing converged results for restart'
|
||||
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F)) ! writing deformation gradient field to file
|
||||
write (777,rec=1) F
|
||||
close (777)
|
||||
call IO_write_jobBinaryFile(777,'C',size(C))
|
||||
write (777,rec=1) C
|
||||
close(777)
|
||||
endif
|
||||
|
||||
endif ! end calculation/forwarding
|
||||
enddo ! end looping over incs in current loadcase
|
||||
deallocate(c_reduced)
|
||||
deallocate(s_reduced)
|
||||
enddo ! end looping over loadcases
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
|
||||
notConvergedCounter + convergedCounter, ' (', &
|
||||
real(convergedCounter, pReal)/&
|
||||
real(notConvergedCounter + convergedCounter,pReal)*100.0_pReal, &
|
||||
' %) increments converged!'
|
||||
close(538)
|
||||
call fftw_destroy_plan(plan_stress); call fftw_destroy_plan(plan_correction)
|
||||
if (debugDivergence) call fftw_destroy_plan(plan_divergence)
|
||||
if (debugFFTW) then
|
||||
call fftw_destroy_plan(plan_scalarField_forth)
|
||||
call fftw_destroy_plan(plan_scalarField_back)
|
||||
endif
|
||||
if (notConvergedCounter > 0_pInt) call quit(3_pInt)
|
||||
call quit(0_pInt)
|
||||
end program DAMASK_spectral
|
|
@ -0,0 +1,710 @@
|
|||
! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
|
||||
!
|
||||
! This file is part of DAMASK,
|
||||
! the Düsseldorf Advanced Material Simulation Kit.
|
||||
!
|
||||
! DAMASK is free software: you can redistribute it and/or modify
|
||||
! it under the terms of the GNU General Public License as published by
|
||||
! the Free Software Foundation, either version 3 of the License, or
|
||||
! (at your option) any later version.
|
||||
!
|
||||
! DAMASK is distributed in the hope that it will be useful,
|
||||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
! GNU General Public License for more details.
|
||||
!
|
||||
! You should have received a copy of the GNU General Public License
|
||||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||||
!
|
||||
!##################################################################################################
|
||||
!* $Id$
|
||||
!##################################################################################################
|
||||
! Material subroutine for BVP solution using spectral method
|
||||
!
|
||||
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
||||
!
|
||||
! written by P. Eisenlohr,
|
||||
! F. Roters,
|
||||
! L. Hantcherli,
|
||||
! W.A. Counts,
|
||||
! D.D. Tjahjanto,
|
||||
! C. Kords,
|
||||
! M. Diehl,
|
||||
! R. Lebensohn
|
||||
!
|
||||
! MPI fuer Eisenforschung, Duesseldorf
|
||||
|
||||
#include "spectral_quit.f90"
|
||||
|
||||
program DAMASK_spectral
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use DAMASK_interface, only: &
|
||||
DAMASK_interface_init, &
|
||||
loadCaseFile, &
|
||||
geometryFile, &
|
||||
getSolverWorkingDirectoryName, &
|
||||
getSolverJobName, &
|
||||
appendToOutFile
|
||||
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
pReal, &
|
||||
DAMASK_NaN
|
||||
|
||||
use IO, only: &
|
||||
IO_isBlank, &
|
||||
IO_open_file, &
|
||||
IO_stringPos, &
|
||||
IO_stringValue, &
|
||||
IO_floatValue, &
|
||||
IO_intValue, &
|
||||
IO_error, &
|
||||
IO_lc, &
|
||||
IO_read_jobBinaryFile, &
|
||||
IO_write_jobBinaryFile
|
||||
|
||||
use debug, only: &
|
||||
debug_level, &
|
||||
debug_spectral, &
|
||||
debug_levelBasic, &
|
||||
debug_spectralDivergence, &
|
||||
debug_spectralRestart, &
|
||||
debug_spectralFFTW, &
|
||||
debug_reset, &
|
||||
debug_info
|
||||
|
||||
use math
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
mesh_spectral_getDimension, &
|
||||
mesh_spectral_getHomogenization
|
||||
|
||||
use CPFEM, only: &
|
||||
CPFEM_general, &
|
||||
CPFEM_initAll
|
||||
|
||||
use FEsolving, only: &
|
||||
restartWrite, &
|
||||
restartInc
|
||||
|
||||
use numerics, only: &
|
||||
err_div_tol, &
|
||||
err_stress_tolrel, &
|
||||
err_stress_tolabs, &
|
||||
rotation_tol, &
|
||||
itmax,&
|
||||
itmin, &
|
||||
memory_efficient, &
|
||||
divergence_correction, &
|
||||
DAMASK_NumThreadsInt, &
|
||||
fftw_planner_flag, &
|
||||
fftw_timelimit
|
||||
|
||||
use homogenization, only: &
|
||||
materialpoint_sizeResults, &
|
||||
materialpoint_results
|
||||
|
||||
implicit none
|
||||
|
||||
#ifdef PETSC
|
||||
#include <finclude/petscsys.h>
|
||||
#include <finclude/petscvec.h>
|
||||
#include <finclude/petscsnes.h>
|
||||
#include <finclude/petscvec.h90>
|
||||
#include <finclude/petscsnes.h90>
|
||||
#endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables related to information from load case and geom file
|
||||
real(pReal), dimension(9) :: &
|
||||
temp_valueVector !> temporarily from loadcase file when reading in tensors
|
||||
logical, dimension(9) :: &
|
||||
temp_maskVector !> temporarily from loadcase file when reading in tensors
|
||||
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
|
||||
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
||||
1_pInt, & ! dropguessing
|
||||
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
|
||||
myUnit = 234_pInt
|
||||
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
|
||||
|
||||
integer(pInt) :: &
|
||||
N_l = 0_pInt, &
|
||||
N_t = 0_pInt, &
|
||||
N_n = 0_pInt, &
|
||||
N_Fdot = 0_pInt, &
|
||||
Npoints,& ! number of Fourier points
|
||||
homog, & ! homogenization scheme used
|
||||
res1_red ! to store res(1)/2 +1
|
||||
|
||||
character(len=1024) :: &
|
||||
line
|
||||
|
||||
type bc_type
|
||||
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
|
||||
stress = 0.0_pReal, & ! stress BC (if applicable)
|
||||
rotation = math_I3 ! rotation of BC (if applicable)
|
||||
real(pReal) :: time = 0.0_pReal, & ! length of increment
|
||||
temperature = 300.0_pReal ! isothermal starting conditions
|
||||
integer(pInt) :: incs = 0_pInt, & ! number of increments
|
||||
outputfrequency = 1_pInt, & ! frequency of result writes
|
||||
restartfrequency = 0_pInt, & ! frequency of restart writes
|
||||
logscale = 0_pInt ! linear/logaritmic time inc flag
|
||||
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
|
||||
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
|
||||
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
|
||||
maskStress = .false. ! mask of stress boundary conditions
|
||||
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
|
||||
end type
|
||||
|
||||
type(bc_type), allocatable, dimension(:) :: bc
|
||||
|
||||
|
||||
real(pReal) :: wgt
|
||||
real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction
|
||||
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: &
|
||||
P_av, &
|
||||
F_aim = math_I3, &
|
||||
F_aim_lastInc = math_I3, &
|
||||
mask_stress, &
|
||||
mask_defgrad, &
|
||||
deltaF_aim, &
|
||||
F_aim_lab, &
|
||||
F_aim_lab_lastIter, &
|
||||
P_av_lab
|
||||
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
dPdF, &
|
||||
C_ref = 0.0_pReal, &
|
||||
C = 0.0_pReal, &
|
||||
S_lastInc, &
|
||||
C_lastInc ! stiffness and compliance
|
||||
|
||||
real(pReal), dimension(6) :: sigma ! cauchy stress
|
||||
real(pReal), dimension(6,6) :: dsde
|
||||
real(pReal), dimension(9,9) :: temp99_Real ! compliance and stiffness in matrix notation
|
||||
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
||||
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! pointwise data
|
||||
type(C_PTR) :: tensorField ! field in real an fourier space
|
||||
real(pReal), dimension(:,:,:,:,:), pointer :: P_real, deltaF_real ! field in real space (pointer)
|
||||
|
||||
complex(pReal), dimension(:,:,:,:,:), pointer :: P_fourier,deltaF_fourier ! field in fourier space (pointer)
|
||||
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information for spectral method and FFTW
|
||||
type(C_PTR) :: plan_stress, plan_correction ! plans for fftw
|
||||
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
||||
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
|
||||
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
complex(pReal), dimension(3) :: temp3_Complex
|
||||
complex(pReal), dimension(3,3) :: temp33_Complex
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
integer(pInt) :: i, j, k, l, m, n, p, errorID
|
||||
integer(pInt) :: N_Loadcases, loadcase = 0_pInt, inc, iter, ielem, CPFEM_mode=1_pInt, &
|
||||
ierr, totalIncsCounter = 0_pInt,&
|
||||
notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
|
||||
logical :: errmatinv
|
||||
real(pReal) :: defgradDet
|
||||
character(len=6) :: loadcase_string
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables controlling debugging
|
||||
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables for additional output due to general debugging
|
||||
real(pReal) :: defgradDetMax, defgradDetMin, maxCorrectionSym, maxCorrectionSkew
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables for additional output of divergence calculations
|
||||
type(C_PTR) :: divergence, plan_divergence
|
||||
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
|
||||
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: divergence_post
|
||||
real(pReal) :: pstress_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
|
||||
err_div_max, err_real_div_max
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables for debugging fft using a scalar field
|
||||
type(C_PTR) :: scalarField_realC, scalarField_fourierC,&
|
||||
plan_scalarField_forth, plan_scalarField_back
|
||||
complex(pReal), dimension(:,:,:), pointer :: scalarField_real
|
||||
complex(pReal), dimension(:,:,:), pointer :: scalarField_fourier
|
||||
integer(pInt) :: row, column
|
||||
|
||||
!##################################################################################################
|
||||
! reading of information from load case file and geometry file
|
||||
!##################################################################################################
|
||||
|
||||
subroutine init
|
||||
|
||||
#ifdef PETSC
|
||||
integer :: ierr_psc
|
||||
call PetscInitialize(PETSC_NULL_CHARACTER, ierr_psc)
|
||||
#endif
|
||||
call DAMASK_interface_init
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ''
|
||||
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! debugging parameters
|
||||
debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0
|
||||
debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0
|
||||
debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0
|
||||
debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0
|
||||
|
||||
!##################################################################################################
|
||||
! initialization
|
||||
!##################################################################################################
|
||||
|
||||
call c_f_pointer(tensorField, P_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
|
||||
call c_f_pointer(tensorField, deltaF_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
|
||||
call c_f_pointer(tensorField, P_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
|
||||
call c_f_pointer(tensorField, deltaF_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! creating plans
|
||||
plan_stress = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
|
||||
P_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
||||
P_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
||||
|
||||
plan_correction =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
|
||||
deltaF_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,&
|
||||
deltaF_real,[ res(3),res(2) ,res(1)+2_pInt],&
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! in case of no restart get reference material stiffness and init fields to no deformation
|
||||
if (restartInc == 1_pInt) then
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
F(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) - geomdim/real(2_pInt*res,pReal)
|
||||
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
||||
0.0_pReal,ielem,1_pInt,sigma,dsde,P_real(i,j,k,1:3,1:3),dPdF)
|
||||
C = C + dPdF
|
||||
enddo; enddo; enddo
|
||||
C = C * wgt
|
||||
C_ref = C
|
||||
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
|
||||
write (777,rec=1) C_ref
|
||||
close(777)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! restore deformation gradient and stiffness from saved state
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
close (777)
|
||||
F_lastInc = F
|
||||
F_aim = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F_aim = F_aim + F(i,j,k,1:3,1:3) ! calculating old average deformation
|
||||
enddo; enddo; enddo
|
||||
F_aim = F_aim * wgt
|
||||
F_aim_lastInc = F_aim
|
||||
coordinates = 0.0 ! change it later!!!
|
||||
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
|
||||
read (777,rec=1) C_ref
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'C',trim(getSolverJobName()),size(C))
|
||||
read (777,rec=1) C
|
||||
close (777)
|
||||
CPFEM_mode = 2_pInt
|
||||
endif
|
||||
|
||||
end subroutine init
|
||||
|
||||
|
||||
subroutine solution(guessmode, F_aim,F_aimLastInc, BC_stress, mask_stress)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! update local deformation gradient and coordinates
|
||||
|
||||
deltaF_aim = math_rotate_backward33(deltaF_aim,bc(loadcase)%rotation)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
temp33_Real = F(i,j,k,1:3,1:3)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
||||
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
|
||||
*timeinc/timeinc_old &
|
||||
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
|
||||
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
|
||||
enddo; enddo; enddo
|
||||
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,bc(loadcase)%rotation),& ! calculate current coordinates
|
||||
1.0_pReal,F_lastInc,coordinates)
|
||||
|
||||
|
||||
|
||||
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
||||
iter = 0_pInt
|
||||
err_div = huge(err_div_tol) ! go into loop
|
||||
|
||||
!##################################################################################################
|
||||
! convergence loop (looping over iterations)
|
||||
!##################################################################################################
|
||||
do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol))&
|
||||
.or. iter < itmin)
|
||||
iter = iter + 1_pInt
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new iteration
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
write(6,'(6(a,i6.6))') 'Loadcase ',loadcase,' Inc. ',inc,'/',bc(loadcase)%incs,&
|
||||
' @ Iter. ',itmin,' < ',iter,' < ',itmax
|
||||
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
|
||||
math_transpose33(F_aim)
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... update stress field P(F) .....................................'
|
||||
if (restartWrite) write(6,'(a)') 'writing restart info for last increment'
|
||||
F_aim_lab_lastIter = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! evaluate constitutive response
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,&
|
||||
P_real(i,j,k,1:3,1:3),dPdF)
|
||||
enddo; enddo; enddo
|
||||
|
||||
P_real = 0.0_pReal ! needed because of the padding for FFTW
|
||||
C = 0.0_pReal
|
||||
ielem = 0_pInt
|
||||
call debug_reset()
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
|
||||
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde, &
|
||||
P_real(i,j,k,1:3,1:3),dPdF)
|
||||
CPFEM_mode = 2_pInt
|
||||
C = C + dPdF
|
||||
enddo; enddo; enddo
|
||||
call debug_info()
|
||||
! for test of regridding
|
||||
! if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
||||
! mod(inc-1,bc(loadcase)%restartFrequency) == 0_pInt .and. &
|
||||
! restartInc/=inc) call quit(-1*(restartInc+1)) ! trigger exit to regrid
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! copy one component of the stress field to to a single FT and check for mismatch
|
||||
if (debugFFTW) then
|
||||
row = (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
|
||||
column = (mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
|
||||
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
|
||||
cmplx(P_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! call function to calculate divergence from math (for post processing) to check results
|
||||
if (debugDivergence) &
|
||||
call divergence_fft(res,virt_dim,3_pInt,&
|
||||
P_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) ! padding
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the FT because it simplifies calculation of average stress in real space also
|
||||
call fftw_execute_dft_r2c(plan_stress,P_real,P_fourier)
|
||||
|
||||
P_av_lab = real(P_fourier(1,1,1,1:3,1:3),pReal)*wgt
|
||||
P_av = math_rotate_forward33(P_av_lab,bc(loadcase)%rotation)
|
||||
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
|
||||
math_transpose33(P_av)/1.e6_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 FT results
|
||||
if (debugFFTW) then
|
||||
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
|
||||
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
|
||||
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
|
||||
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
|
||||
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! removing highest frequencies
|
||||
P_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
P_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
if(res(3)>1_pInt) &
|
||||
P_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
|
||||
err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
|
||||
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
|
||||
' (',err_stress,' Pa)'
|
||||
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - bc(loadcase)%stress))) ! residual on given stress components
|
||||
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
|
||||
else
|
||||
err_stress_tol = +huge(1.0_pReal)
|
||||
endif
|
||||
|
||||
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! actual spectral method
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... calculating equilibrium with spectral method .................'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculating RMS divergence criterion in Fourier space
|
||||
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(P_av_lab,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
|
||||
math_transpose33(P_av_lab)))))
|
||||
err_div_RMS = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
|
||||
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
err_div_RMS = err_div_RMS &
|
||||
+ 2.0_pReal*(sum (real(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
+sum(aimag(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),&
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
|
||||
enddo
|
||||
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
|
||||
+ sum( real(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum( real(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
|
||||
enddo; enddo
|
||||
|
||||
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
|
||||
|
||||
if (err_div_RMS/pstress_av_L2 > err_div &
|
||||
.and. err_stress < err_stress_tol &
|
||||
.and. iter >= itmin ) then
|
||||
write(6,'(a)') 'Increasing divergence, stopping iterations'
|
||||
iter = itmax
|
||||
endif
|
||||
err_div = err_div_RMS/pstress_av_L2 ! criterion to stop iterations
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate additional divergence criteria and report
|
||||
if (debugDivergence) then ! calculate divergence again
|
||||
err_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
temp3_Complex = math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
|
||||
xi(1:3,i,j,k))*TWOPIIMG
|
||||
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
|
||||
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
|
||||
|
||||
err_real_div_RMS = 0.0_pReal
|
||||
err_post_div_RMS = 0.0_pReal
|
||||
err_real_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
|
||||
enddo; enddo; enddo
|
||||
|
||||
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
|
||||
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
|
||||
err_real_div_max = sqrt( err_real_div_max) ! max in real space
|
||||
err_div_max = sqrt( err_div_max) ! max in Fourier space
|
||||
|
||||
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
|
||||
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
|
||||
endif
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
|
||||
' (',err_div,' N/m³)'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! to the actual spectral method calculation (mechanical equilibrium)
|
||||
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
|
||||
gamma_hat(1,1,1, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
|
||||
P_fourier(i,j,k,1:3,1:3))
|
||||
deltaF_fourier(i,j,k,1:3,1:3) = temp33_Complex
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
|
||||
else ! use precalculated gamma-operator
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
||||
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
|
||||
P_fourier(i,j,k,1:3,1:3))
|
||||
deltaF_fourier(i,j,k, 1:3,1:3) = temp33_Complex
|
||||
enddo; enddo; enddo
|
||||
|
||||
endif
|
||||
deltaF_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab_lastIter - F_aim_lab) & ! assign (negative) average deformation gradient change to zero frequency (real part)
|
||||
* real(Npoints,pReal),0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
scalarField_fourier(i,j,k) = deltaF_fourier(i,j,k,row,column)
|
||||
enddo; enddo; enddo
|
||||
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
|
||||
m = 1_pInt
|
||||
do k = 1_pInt, res(3)
|
||||
n = 1_pInt
|
||||
do j = 1_pInt, res(2)
|
||||
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
|
||||
if(n == 1_pInt) n = res(2) + 1_pInt
|
||||
n = n-1_pInt
|
||||
enddo
|
||||
if(m == 1_pInt) m = res(3) + 1_pInt
|
||||
m = m -1_pInt
|
||||
enddo; enddo
|
||||
endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the inverse FT
|
||||
call fftw_execute_dft_c2r(plan_correction,deltaF_fourier,deltaF_real) ! back transform of fluct deformation gradient
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
|
||||
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
|
||||
write(6,'(a,es11.4)') 'max iFT relative error = ',&
|
||||
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
|
||||
deltaF_real(1:res(1),1:res(2),1:res(3),row,column))/&
|
||||
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate some additional output
|
||||
if(debugGeneral) then
|
||||
maxCorrectionSkew = 0.0_pReal
|
||||
maxCorrectionSym = 0.0_pReal
|
||||
temp33_Real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
maxCorrectionSym = max(maxCorrectionSym,&
|
||||
maxval(math_symmetric33(deltaF_real(i,j,k,1:3,1:3))))
|
||||
maxCorrectionSkew = max(maxCorrectionSkew,&
|
||||
maxval(math_skew33(deltaF_real(i,j,k,1:3,1:3))))
|
||||
temp33_Real = temp33_Real + deltaF_real(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
|
||||
maxCorrectionSym*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
|
||||
maxCorrectionSkew*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
|
||||
maxval(math_symmetric33(temp33_real))/&
|
||||
maxval(math_skew33(temp33_real))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! updated deformation gradient
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - deltaF_real(i,j,k,1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
|
||||
enddo; enddo; enddo
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate bounds of det(F) and report
|
||||
if(debugGeneral) then
|
||||
defgradDetMax = -huge(1.0_pReal)
|
||||
defgradDetMin = +huge(1.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
defgradDet = math_det33(F(i,j,k,1:3,1:3))
|
||||
defgradDetMax = max(defgradDetMax,defgradDet)
|
||||
defgradDetMin = min(defgradDetMin,defgradDet)
|
||||
enddo; enddo; enddo
|
||||
|
||||
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
|
||||
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
|
||||
endif
|
||||
|
||||
enddo ! end looping when convergency is achieved
|
||||
|
||||
CPFEM_mode = 1_pInt ! winding forward
|
||||
C = C * wgt
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
|
||||
notConvergedCounter = notConvergedCounter + 1_pInt
|
||||
else
|
||||
convergedCounter = convergedCounter + 1_pInt
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
|
||||
endif
|
||||
|
||||
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... writing results to file ......................................'
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
||||
flush(538)
|
||||
endif
|
||||
|
||||
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
||||
mod(inc,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
|
||||
restartInc=totalIncsCounter
|
||||
restartWrite = .true.
|
||||
write(6,'(a)') 'writing converged results for restart'
|
||||
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F)) ! writing deformation gradient field to file
|
||||
write (777,rec=1) F
|
||||
close (777)
|
||||
call IO_write_jobBinaryFile(777,'C',size(C))
|
||||
write (777,rec=1) C
|
||||
close(777)
|
||||
endif
|
||||
|
||||
endif ! end calculation/forwarding
|
||||
enddo ! end looping over incs in current loadcase
|
||||
|
|
@ -1,889 +0,0 @@
|
|||
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
||||
!
|
||||
! This file is part of DAMASK,
|
||||
! the Düsseldorf Advanced MAterial Simulation Kit.
|
||||
!
|
||||
! DAMASK is free software: you can redistribute it and/or modify
|
||||
! it under the terms of the GNU General Public License as published by
|
||||
! the Free Software Foundation, either version 3 of the License, or
|
||||
! (at your option) any later version.
|
||||
!
|
||||
! DAMASK is distributed in the hope that it will be useful,
|
||||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
! GNU General Public License for more details.
|
||||
!
|
||||
! You should have received a copy of the GNU General Public License
|
||||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||||
!
|
||||
!##################################################################################################
|
||||
!* $Id$
|
||||
!##################################################################################################
|
||||
! Material subroutine for BVP solution using spectral method
|
||||
!
|
||||
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
||||
!
|
||||
! written by P. Eisenlohr,
|
||||
! F. Roters,
|
||||
! L. Hantcherli,
|
||||
! W.A. Counts,
|
||||
! D.D. Tjahjanto,
|
||||
! C. Kords,
|
||||
! M. Diehl,
|
||||
! R. Lebensohn
|
||||
!
|
||||
! MPI fuer Eisenforschung, Duesseldorf
|
||||
#include "spectral_quit.f90"
|
||||
|
||||
program DAMASK_spectral_AL
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use DAMASK_interface, only: &
|
||||
DAMASK_interface_init, &
|
||||
getLoadcaseName, &
|
||||
getSolverWorkingDirectoryName, &
|
||||
getSolverJobName, &
|
||||
getModelName, &
|
||||
inputFileExtension
|
||||
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
pReal, &
|
||||
DAMASK_NaN
|
||||
|
||||
use IO, only: &
|
||||
IO_isBlank, &
|
||||
IO_open_file, &
|
||||
IO_stringPos, &
|
||||
IO_stringValue, &
|
||||
IO_floatValue, &
|
||||
IO_intValue, &
|
||||
IO_error, &
|
||||
IO_lc, &
|
||||
IO_read_jobBinaryFile, &
|
||||
IO_write_jobBinaryFile
|
||||
|
||||
use debug, only: &
|
||||
debug_level, &
|
||||
debug_spectral, &
|
||||
debug_levelBasic, &
|
||||
debug_spectralDivergence, &
|
||||
debug_spectralRestart, &
|
||||
debug_spectralFFTW, &
|
||||
debug_reset, &
|
||||
debug_info
|
||||
|
||||
use math
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
mesh_spectral_getDimension, &
|
||||
mesh_spectral_getHomogenization
|
||||
|
||||
use CPFEM, only: &
|
||||
CPFEM_general, &
|
||||
CPFEM_initAll
|
||||
|
||||
use FEsolving, only: &
|
||||
restartWrite, &
|
||||
restartInc
|
||||
|
||||
use numerics, only: &
|
||||
err_stress_tolrel, &
|
||||
err_stress_tolabs, &
|
||||
rotation_tol, &
|
||||
itmax,&
|
||||
itmin, &
|
||||
memory_efficient, &
|
||||
update_gamma, &
|
||||
divergence_correction, &
|
||||
DAMASK_NumThreadsInt, &
|
||||
fftw_planner_flag, &
|
||||
fftw_timelimit
|
||||
|
||||
use homogenization, only: &
|
||||
materialpoint_sizeResults, &
|
||||
materialpoint_results
|
||||
|
||||
implicit none
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables to read from load case and geom file
|
||||
real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file
|
||||
logical, dimension(9) :: temp_maskVector
|
||||
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
|
||||
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
||||
1_pInt, & ! dropguessing
|
||||
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
|
||||
myUnit = 234_pInt
|
||||
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
|
||||
integer(pInt) :: &
|
||||
N_l = 0_pInt,&
|
||||
N_t = 0_pInt,&
|
||||
N_n = 0_pInt,&
|
||||
N_Fdot = 0_pInt
|
||||
character(len=1024) :: line
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variable storing information from load case file
|
||||
type bc_type
|
||||
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
|
||||
P = 0.0_pReal, & ! stress BC (if applicable)
|
||||
rotation = math_I3 ! rotation of BC (if applicable)
|
||||
real(pReal) :: time = 0.0_pReal, & ! length of increment
|
||||
temperature = 300.0_pReal ! isothermal starting conditions
|
||||
integer(pInt) :: incs = 0_pInt, & ! number of increments
|
||||
outputfrequency = 1_pInt, & ! frequency of result writes
|
||||
restartfrequency = 0_pInt, & ! frequency of restart writes
|
||||
logscale = 0_pInt ! linear/logaritmic time inc flag
|
||||
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
|
||||
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
|
||||
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
|
||||
maskStress = .false. ! mask of stress boundary conditions
|
||||
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
|
||||
end type
|
||||
|
||||
type(bc_type), allocatable, dimension(:) :: bc
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information from geom file
|
||||
real(pReal) :: wgt
|
||||
real(pReal), dimension(3) :: geomdim = 0.0_pReal ! physical dimension of volume element per direction
|
||||
integer(pInt) :: Npoints,& ! number of Fourier points
|
||||
homog ! homogenization scheme used
|
||||
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
|
||||
integer(pInt) :: res1_red ! to store res(1)/2 +1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: P_av = 0.0_pReal, &
|
||||
F_aim = math_I3, F_aim_lastInc = math_I3, lambda_av, &
|
||||
mask_stress, mask_defgrad, deltaF, F_star_av, &
|
||||
F_aim_lab ! quantities rotated to other coordinate system
|
||||
real(pReal), dimension(3,3,3,3) :: C_inc0, C=0.0_pReal, S_inc0, S_lastInc, C_lastInc ! stiffness and compliance
|
||||
real(pReal), dimension(6) :: sigma ! cauchy stress
|
||||
real(pReal), dimension(6,6) :: dsde ! small strain stiffness
|
||||
real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation
|
||||
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
||||
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! pointwise data
|
||||
type(C_PTR) :: tensorField ! fields in real an fourier space
|
||||
real(pReal), dimension(:,:,:,:,:), pointer :: tau_real, F_real ! fields in real space (pointer)
|
||||
complex(pReal), dimension(:,:,:,:,:), pointer :: tau_fourier, F_fourier ! fields in fourier space (pointer)
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F_lastInc, lambda, P, F_star
|
||||
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: dPdF
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information for spectral method and FFTW
|
||||
type(C_PTR) :: plan_correction, plan_tau ! plans for fftw
|
||||
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
||||
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
|
||||
real(pReal) :: guessmode, err_stress, err_stress_tol, err_f, err_p, err_crit, &
|
||||
err_f_point, err_p_point, err_nl, err_nl_point
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
complex(pReal), dimension(3,3) :: temp33_Complex
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
integer(pInt) :: i, j, k, l, u, v, w, errorID = 0_pInt, ierr
|
||||
integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, guesses, guessmax=10_pInt,&
|
||||
totalIncsCounter = 0_pInt,notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
|
||||
logical :: errmatinv, callCPFEM
|
||||
character(len=6) :: loadcase_string
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables controlling debugging
|
||||
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
||||
|
||||
!##################################################################################################
|
||||
! reading of information from load case file and geometry file
|
||||
!##################################################################################################
|
||||
open (6, encoding='UTF-8')
|
||||
call DAMASK_interface_init
|
||||
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral_AL init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ' Working Directory: ',trim(getSolverWorkingDirectoryName())
|
||||
write(6,'(a)') ' Solver Job Name: ',trim(getSolverJobName())
|
||||
write(6,'(a)') ''
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reading the load case file and allocate data structure containing load cases
|
||||
call IO_open_file(myUnit,getLoadcaseName())
|
||||
rewind(myUnit)
|
||||
do
|
||||
read(myUnit,'(a1024)',END = 100) line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
positions = IO_stringPos(line,maxNchunksLoadcase)
|
||||
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
|
||||
select case (IO_lc(IO_stringValue(line,positions,i)))
|
||||
case('l','velocitygrad','velgrad','velocitygradient')
|
||||
N_l = N_l + 1_pInt
|
||||
case('fdot','dotf')
|
||||
N_Fdot = N_Fdot + 1_pInt
|
||||
case('t','time','delta')
|
||||
N_t = N_t + 1_pInt
|
||||
case('n','incs','increments','steps','logincs','logsteps')
|
||||
N_n = N_n + 1_pInt
|
||||
end select
|
||||
enddo ! count all identifiers to allocate memory and do sanity check
|
||||
enddo
|
||||
|
||||
100 N_Loadcases = N_n
|
||||
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
|
||||
call IO_error(error_ID=837_pInt,ext_msg = trim(getLoadcaseName())) ! error message for incomplete loadcase
|
||||
allocate (bc(N_Loadcases))
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reading the load case and assign values to the allocated data structure
|
||||
rewind(myUnit)
|
||||
loadcase = 0_pInt
|
||||
do
|
||||
read(myUnit,'(a1024)',END = 101) line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
loadcase = loadcase + 1_pInt
|
||||
positions = IO_stringPos(line,maxNchunksLoadcase)
|
||||
do j = 1_pInt,maxNchunksLoadcase
|
||||
select case (IO_lc(IO_stringValue(line,positions,j)))
|
||||
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
|
||||
bc(loadcase)%velGradApplied = &
|
||||
(IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.&
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.&
|
||||
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
|
||||
temp_valueVector = 0.0_pReal
|
||||
temp_maskVector = .false.
|
||||
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
|
||||
do k = 1_pInt,9_pInt
|
||||
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
||||
enddo
|
||||
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
|
||||
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
|
||||
case('p','pk1','piolakirchhoff','stress')
|
||||
temp_valueVector = 0.0_pReal
|
||||
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =&
|
||||
IO_stringValue(line,positions,j+k) /= '*'
|
||||
do k = 1_pInt,9_pInt
|
||||
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =&
|
||||
IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%P matrix
|
||||
enddo
|
||||
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3]))
|
||||
bc(loadcase)%P = math_plain9to33(temp_valueVector)
|
||||
case('t','time','delta') ! increment time
|
||||
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
|
||||
case('temp','temperature') ! starting temperature
|
||||
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
|
||||
case('n','incs','increments','steps') ! number of increments
|
||||
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
||||
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
|
||||
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
||||
bc(loadcase)%logscale = 1_pInt
|
||||
case('f','freq','frequency','outputfreq') ! frequency of result writings
|
||||
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
|
||||
case('r','restart','restartwrite') ! frequency of writing restart information
|
||||
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
|
||||
case('guessreset','dropguessing')
|
||||
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
|
||||
case('euler') ! rotation of loadcase given in euler angles
|
||||
u = 0_pInt ! assuming values given in radians
|
||||
v = 1_pInt ! assuming keyword indicating degree/radians
|
||||
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
|
||||
case('deg','degree')
|
||||
u = 1_pInt ! for conversion from degree to radian
|
||||
case('rad','radian')
|
||||
case default
|
||||
v = 0_pInt ! immediately reading in angles, assuming radians
|
||||
end select
|
||||
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = &
|
||||
IO_floatValue(line,positions,j+v+k) * real(u,pReal) * inRad
|
||||
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
|
||||
case('rotation','rot') ! assign values for the rotation of loadcase matrix
|
||||
temp_valueVector = 0.0_pReal
|
||||
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
||||
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
|
||||
end select
|
||||
enddo; enddo
|
||||
101 close(myUnit)
|
||||
|
||||
!-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init
|
||||
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
|
||||
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! get resolution, dimension, homogenization and variables derived from resolution
|
||||
res = mesh_spectral_getResolution()
|
||||
geomdim = mesh_spectral_getDimension()
|
||||
homog = mesh_spectral_getHomogenization()
|
||||
|
||||
|
||||
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
||||
Npoints = res(1)*res(2)*res(3)
|
||||
wgt = 1.0_pReal/real(Npoints, pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! output of geometry
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'DAMASK spectral_AL:'
|
||||
write(6,'(a)') 'The AL spectral method boundary value problem solver for'
|
||||
write(6,'(a)') 'the Duesseldorf Advanced Material Simulation Kit'
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'geometry file: ',trim(getModelName())//InputFileExtension
|
||||
write(6,'(a)') '============================================================='
|
||||
write(6,'(a,3(i12 ))') 'resolution a b c:', res
|
||||
write(6,'(a,3(f12.5))') 'dimension x y z:', geomdim
|
||||
write(6,'(a,i5)') 'homogenization: ',homog
|
||||
write(6,'(a)') '#############################################################'
|
||||
write(6,'(a)') 'loadcase file: ',trim(getLoadcaseName())
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! consistency checks and output of load case
|
||||
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase
|
||||
|
||||
do loadcase = 1_pInt, N_Loadcases
|
||||
write (loadcase_string, '(i6)' ) loadcase
|
||||
|
||||
write(6,'(a)') '============================================================='
|
||||
write(6,'(a,i6)') 'loadcase: ', loadcase
|
||||
|
||||
if (.not. bc(loadcase)%followFormerTrajectory) write(6,'(a)') 'drop guessing along trajectory'
|
||||
if (bc(loadcase)%velGradApplied) then
|
||||
do j = 1_pInt, 3_pInt
|
||||
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
|
||||
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
|
||||
enddo
|
||||
write(6,'(a)') 'velocity gradient:'
|
||||
else
|
||||
write(6,'(a)') 'deformation gradient rate:'
|
||||
endif
|
||||
write (6,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),&
|
||||
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation))
|
||||
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'stress / GPa:',&
|
||||
1e-9_pReal*merge(math_transpose33(bc(loadcase)%P),&
|
||||
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress))
|
||||
if (any(bc(loadcase)%rotation /= math_I3)) &
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
|
||||
math_transpose33(bc(loadcase)%rotation)
|
||||
write(6,'(a,f12.6)') 'temperature:',bc(loadcase)%temperature
|
||||
write(6,'(a,f12.6)') 'time: ',bc(loadcase)%time
|
||||
write(6,'(a,i5)') 'increments: ',bc(loadcase)%incs
|
||||
write(6,'(a,i5)') 'output frequency: ',bc(loadcase)%outputfrequency
|
||||
write(6,'(a,i5)') 'restart frequency: ',bc(loadcase)%restartfrequency
|
||||
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
|
||||
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
|
||||
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
|
||||
errorID = 838_pInt ! no rotation is allowed by stress BC
|
||||
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))&
|
||||
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
|
||||
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)&
|
||||
errorID = 846_pInt ! given rotation matrix contains strain
|
||||
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
|
||||
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
|
||||
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
|
||||
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
|
||||
enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! debugging parameters
|
||||
debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt
|
||||
debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt
|
||||
debugGeneral = .true.
|
||||
|
||||
!##################################################################################################
|
||||
! initialization
|
||||
!##################################################################################################
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate more memory
|
||||
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (dPdF ( res(1), res(2),res(3),3,3,3,3), source = 0.0_pReal)
|
||||
allocate (F_star ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
|
||||
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
||||
allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally
|
||||
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
|
||||
call c_f_pointer(tensorField, tau_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
|
||||
call c_f_pointer(tensorField, F_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
|
||||
call c_f_pointer(tensorField, tau_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
|
||||
call c_f_pointer(tensorField, F_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! general initialization of fftw (see manual on fftw.org for more details)
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
|
||||
!$ if(DAMASK_NumThreadsInt > 0_pInt) then
|
||||
!$ ierr = fftw_init_threads()
|
||||
!$ if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
|
||||
!$ call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
|
||||
!$ endif
|
||||
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! creating plans
|
||||
plan_tau = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
|
||||
tau_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
||||
tau_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
||||
|
||||
plan_correction = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
|
||||
F_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,&
|
||||
F_real,[ res(3),res(2) ,res(1)+2_pInt],&
|
||||
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
||||
if (debugGeneral) write(6,'(a)') 'FFTW initialized'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init fields to no deformation
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
F_star(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res * [i,j,k], pReal) - geomdim/real(2_pInt*res,pReal)
|
||||
call CPFEM_general(3_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
||||
0.0_pReal,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
enddo; enddo; enddo
|
||||
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
||||
0.0_pReal,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
C = C + dPdF(i,j,k,1:3,1:3,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
C_inc0 = C * wgt *3.0_pReal ! linear reference material stiffness
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) and remove the given highest frequencies
|
||||
do k = 1_pInt, res(3)
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi(1:3,i,j,k) = real(k_s, pReal)/geomdim
|
||||
enddo; enddo; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the gamma operator
|
||||
if(memory_efficient) then ! allocate just single fourth order tensor
|
||||
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
|
||||
else ! precalculation of gamma_hat field
|
||||
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
||||
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
|
||||
gamma_hat(i,j,k, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
endif
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! write header of output file
|
||||
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
|
||||
//'.spectralOut',form='UNFORMATTED',status='REPLACE')
|
||||
write(538) 'load', trim(getLoadcaseName())
|
||||
write(538) 'workingdir', trim(getSolverWorkingDirectoryName())
|
||||
write(538) 'geometry', trim(getSolverJobName())//InputFileExtension
|
||||
write(538) 'resolution', res
|
||||
write(538) 'dimension', geomdim
|
||||
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
|
||||
write(538) 'loadcases', N_Loadcases
|
||||
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
|
||||
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
|
||||
write(538) 'logscales', bc(1:N_Loadcases)%logscale
|
||||
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
|
||||
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
|
||||
write(538) 'eoh' ! end of header
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results
|
||||
if (debugGeneral) write(6,'(a)') 'Header of result file written out'
|
||||
|
||||
!##################################################################################################
|
||||
! Loop over loadcases defined in the loadcase file
|
||||
!##################################################################################################
|
||||
do loadcase = 1_pInt, N_Loadcases
|
||||
time0 = time ! loadcase start time
|
||||
if (bc(loadcase)%followFormerTrajectory .and. &
|
||||
(restartInc < totalIncsCounter .or. &
|
||||
restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable
|
||||
guessmode = 1.0_pReal
|
||||
else
|
||||
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! arrays for mixed boundary conditions
|
||||
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
|
||||
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
|
||||
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
|
||||
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
|
||||
!##################################################################################################
|
||||
! loop oper incs defined in input file for current loadcase
|
||||
!##################################################################################################
|
||||
do inc = 1_pInt, bc(loadcase)%incs
|
||||
totalIncsCounter = totalIncsCounter + 1_pInt
|
||||
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! forwarding time
|
||||
timeinc_old = timeinc
|
||||
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
|
||||
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
|
||||
else
|
||||
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
|
||||
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
|
||||
else ! not-1st inc of 1st loadcase of logarithmic scale
|
||||
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
|
||||
endif
|
||||
else ! not-1st loadcase of logarithmic scale
|
||||
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal))&
|
||||
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
|
||||
real(bc(loadcase)%incs ,pReal)) )
|
||||
endif
|
||||
endif
|
||||
time = time + timeinc
|
||||
|
||||
if (bc(loadcase)%velGradApplied) then ! calculate deltaF from given L and current F
|
||||
deltaF = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
|
||||
else ! deltaF = fDot *timeinc where applicable
|
||||
deltaF = timeinc * mask_defgrad * bc(loadcase)%deformation
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! coordinates at beginning of inc
|
||||
!call deformed_fft(res,geomdim,1.0_pReal,F_real(1:res(1),1:res(2),1:res(3),1:3,1:3),coordinates)! calculate current coordinates
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! winding forward of deformation aim in loadcase system
|
||||
temp33_Real = F_aim
|
||||
F_aim = F_aim &
|
||||
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
|
||||
+ deltaF
|
||||
F_aim_lastInc = temp33_Real
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! update local deformation gradient
|
||||
deltaF = math_rotate_backward33(deltaF,bc(loadcase)%rotation)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
temp33_Real = F_star(i,j,k,1:3,1:3)
|
||||
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
||||
+ guessmode * (F_star(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
|
||||
*timeinc/timeinc_old &
|
||||
+ (1.0_pReal-guessmode) * deltaF ! if not guessing, use prescribed average deformation where applicable
|
||||
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
|
||||
enddo; enddo; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Initialize / Update lambda to useful value
|
||||
P_av = P_av + math_mul3333xx33(C*wgt, F_aim-F_aim_lastInc)
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + math_mul3333xx33(C*wgt, F_aim-F_aim_lastInc)
|
||||
enddo; enddo; enddo
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!Initialize pointwise data for AL scheme: ToDo: good choice?
|
||||
|
||||
F_star_av = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F_star_av = F_star_av + F_star(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
|
||||
F_star_av = F_star_av *wgt
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',&
|
||||
math_transpose33(F_star_av)
|
||||
!
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate reduced compliance
|
||||
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
|
||||
C_lastInc = math_rotate_forward3333(C*wgt,bc(loadcase)%rotation) ! calculate stiffness from former inc
|
||||
c_prev99 = math_Plain3333to99(C_lastInc)
|
||||
k = 0_pInt ! build reduced stiffness
|
||||
do v = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(v)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do u = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(u)) then
|
||||
j = j + 1_pInt
|
||||
c_reduced(k,j) = c_prev99(v,u)
|
||||
endif; enddo; endif; enddo
|
||||
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
|
||||
if(errmatinv) call IO_error(error_ID=400_pInt)
|
||||
s_prev99 = 0.0_pReal ! build full compliance
|
||||
k = 0_pInt
|
||||
do v = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(v)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do u = 1_pInt,9_pInt
|
||||
if(bc(loadcase)%maskStressVector(u)) then
|
||||
j = j + 1_pInt
|
||||
s_prev99(v,u) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
S_lastInc = (math_Plain99to3333(s_prev99))
|
||||
endif
|
||||
S_inc0 = math_invSym3333(C*wgt)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new increment
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
|
||||
|
||||
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
||||
CPFEM_mode = 1_pInt ! winding forward
|
||||
iter = 0_pInt
|
||||
err_crit = huge(1.0_pReal) ! go into loop
|
||||
callCPFEM=.true.
|
||||
guessmax = 3
|
||||
guesses = 0
|
||||
|
||||
!##################################################################################################
|
||||
! convergence loop (looping over iterations)
|
||||
!##################################################################################################
|
||||
do while((iter < itmax .and. (err_crit > 1.0_pReal)) .or. iter < itmin)
|
||||
iter = iter + 1_pInt
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new iteration
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
write(6,'(5(a,i6.6))') 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,&
|
||||
' @ Iteration ',iter,'/',itmax
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
|
||||
err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%P))) ! maximum deviaton (tensor norm not applicable)
|
||||
F_aim = F_aim + math_mul3333xx33(S_lastInc,bc(loadcase)%P- P_av)
|
||||
err_stress_tol = maxval(abs(P_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent
|
||||
else
|
||||
err_stress_tol = + huge(1.0_pReal)
|
||||
endif
|
||||
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F aim =',&
|
||||
math_transpose33(F_aim)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing Fourier transform
|
||||
write(6,'(a)') '... spectral method ...............................................'
|
||||
tau_real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res(1)
|
||||
tau_real(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) - math_mul3333xx33(C_inc0,F_star(i,j,k,1:3,1:3))
|
||||
enddo; enddo; enddo
|
||||
call fftw_execute_dft_r2c(plan_tau,tau_real,tau_fourier)
|
||||
tau_fourier( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
tau_fourier(1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
if(res(3)>1_pInt) &
|
||||
tau_fourier(1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! using gamma operator to update F
|
||||
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
||||
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
|
||||
gamma_hat(1,1,1, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
|
||||
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
||||
temp33_Complex(l,u) = sum(gamma_hat(1,1,1, l,u, 1:3,1:3) *&
|
||||
tau_fourier(i,j,k,1:3,1:3))
|
||||
F_fourier(i,j,k,1:3,1:3) = - temp33_Complex
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
else ! use precalculated gamma-operator
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
||||
forall( u = 1_pInt:3_pInt, v = 1_pInt:3_pInt) &
|
||||
temp33_Complex(u,v) = sum(gamma_hat(i,j,k, u,v, 1:3,1:3) *&
|
||||
tau_fourier(i,j,k,1:3,1:3))
|
||||
F_fourier(i,j,k, 1:3,1:3) = - temp33_Complex
|
||||
enddo; enddo; enddo
|
||||
endif
|
||||
F_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab)*real(Npoints,pReal),0.0_pReal,pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing inverse Fourier transform
|
||||
call fftw_execute_dft_c2r(plan_correction,F_fourier,F_real) ! back transform of fluct deformation gradient
|
||||
F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) * wgt
|
||||
|
||||
F_star_av = 0.0_pReal
|
||||
temp33_real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F_star_av = F_star_av + F_star(i,j,k,1:3,1:3)
|
||||
temp33_real = temp33_real + F_real(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
|
||||
F_star_av = F_star_av *wgt
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',&
|
||||
math_transpose33(F_star_av)
|
||||
temp33_real = temp33_real *wgt
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F =',&
|
||||
math_transpose33(temp33_real)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
write(6,'(a)') '... calling CPFEM to update P(F*) and F*.........................'
|
||||
err_nl_point = huge(1.0_pReal)
|
||||
u = 0_pInt
|
||||
do while (err_nl_point>1.0e6_pReal .or. u<2_pInt)
|
||||
u = u + 1_pInt
|
||||
ielem = 0_pInt
|
||||
err_nl_point = 0.0_pReal
|
||||
err_nl = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
||||
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
||||
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
enddo; enddo; enddo
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(CPFEM_mode,&
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
||||
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
||||
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
CPFEM_mode = 2_pInt ! winding forward
|
||||
temp33_Real = P(i,j,k,1:3,1:3) - lambda(i,j,k,1:3,1:3) &
|
||||
+ math_mul3333xx33(C_inc0,F_star(i,j,k,1:3,1:3)-F_real(i,j,k,1:3,1:3))
|
||||
|
||||
err_nl_point = max(err_nl_point, maxval(abs(temp33_real)))
|
||||
err_nl = max(err_nl, sqrt(math_mul33xx33(temp33_real,temp33_real)))
|
||||
|
||||
! temp33_Real = lambda(i,j,k,1:3,1:3) - P(i,j,k,1:3,1:3) &
|
||||
! + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3))
|
||||
! F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + math_mul3333xx33(math_invSym3333(&
|
||||
! C_inc0 + dPdF(i,j,k,1:3,1:3,1:3,1:3)), temp33_Real)
|
||||
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) - 0.1_pReal * math_mul3333xx33(S_inc0, temp33_Real)
|
||||
enddo; enddo; enddo
|
||||
|
||||
if(u>1) print*, 'comp wise error of nl eq last it:', err_nl_point/1.0e6_pReal
|
||||
if(u>1) print*, 'norm error: last it ', err_nl/1.0e6_pReal
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
write(6,'(a)') '... update λ..........................'
|
||||
|
||||
err_f = 0.0_pReal
|
||||
err_f_point = 0.0_pReal
|
||||
err_p = 0.0_pReal
|
||||
err_p_point = 0.0_pReal
|
||||
|
||||
F_star_av = 0.0_pReal
|
||||
lambda_av = 0.0_pReal
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3) &
|
||||
- F_star(i,j,k,1:3,1:3))
|
||||
F_star_av = F_star_av + F_star(i,j,k,1:3,1:3)
|
||||
lambda_av = lambda_av + lambda(i,j,k,1:3,1:3)
|
||||
|
||||
temp33_real = F_star(i,j,k,1:3,1:3) - F_real(i,j,k,1:3,1:3)
|
||||
err_f_point = max(err_f_point, maxval(abs(temp33_real)))
|
||||
err_f = max(err_f, sqrt(math_mul33xx33(temp33_real,temp33_real)))
|
||||
|
||||
enddo; enddo; enddo
|
||||
|
||||
ielem = 0_pInt
|
||||
P_av = 0.0_pReal
|
||||
C = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
||||
F_real(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
||||
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
enddo; enddo; enddo
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(2_pInt,&
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
||||
F_real(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
||||
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
||||
P_av = P_av + P(i,j,k,1:3,1:3)
|
||||
temp33_real = lambda(i,j,k,1:3,1:3) - P(i,j,k,1:3,1:3)
|
||||
err_p_point = max(err_p_point, maxval(abs(temp33_real)))
|
||||
err_p = max(err_p, sqrt(math_mul33xx33(temp33_real,temp33_real)))
|
||||
C = C + dPdF(i,j,k,1:3,1:3,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
|
||||
F_star_av = F_star_av *wgt
|
||||
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',&
|
||||
math_transpose33(F_star_av)
|
||||
P_av = P_av *wgt
|
||||
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F) / GPa =',&
|
||||
math_transpose33(P_av) /1.e6_pReal
|
||||
lambda_av = lambda_av *wgt
|
||||
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'λ / GPa =',&
|
||||
math_transpose33(lambda_av) /1.e6_pReal
|
||||
|
||||
err_f = err_f/sqrt(math_mul33xx33(F_star_av,F_star_av))
|
||||
err_p = err_p/sqrt(math_mul33xx33(P_av,P_av))
|
||||
|
||||
write(6,'(a,es14.7,es14.7)') 'error F', err_f/1e-4, err_f
|
||||
write(6,'(a,es14.7,es14.7)') 'error P', err_p/1e-3, err_p
|
||||
write(6,'(a,es14.7,es14.7)') 'error stress = ',err_stress/err_stress_tol, err_stress
|
||||
write(6,*) ' '
|
||||
write(6,'(a,es14.7)') 'max abs err F', err_f_point
|
||||
write(6,'(a,es14.7)') 'max abs err P', err_p_point
|
||||
err_crit = max(err_p/1e-3, err_f/1e-4,err_stress/err_stress_tol)
|
||||
write(6,'(a,es14.7)') 'critical error', err_crit
|
||||
|
||||
|
||||
enddo ! end looping when convergency is achieved
|
||||
write(6,'(a)') ' '
|
||||
write(6,'(a)') '=================================================================='
|
||||
if(err_crit > 1.0_pReal) then
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
|
||||
notConvergedCounter = notConvergedCounter + 1_pInt
|
||||
else
|
||||
convergedCounter = convergedCounter + 1_pInt
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
|
||||
endif
|
||||
|
||||
if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency
|
||||
write(6,'(a)') ' '
|
||||
write(6,'(a)') '... writing results to file ......................................'
|
||||
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
||||
endif
|
||||
|
||||
endif ! end calculation/forwarding
|
||||
enddo ! end looping over incs in current loadcase
|
||||
deallocate(c_reduced)
|
||||
deallocate(s_reduced)
|
||||
enddo ! end looping over loadcases
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(i6.6,a,i6.6,a)') notConvergedCounter, ' out of ', &
|
||||
notConvergedCounter + convergedCounter, ' increments did not converge!'
|
||||
close(538)
|
||||
call fftw_destroy_plan(plan_tau); call fftw_destroy_plan(plan_correction)
|
||||
call quit(1_pInt)
|
||||
end program DAMASK_spectral_AL
|
Loading…
Reference in New Issue