keep order
This commit is contained in:
parent
d0dcfedb47
commit
ad312201dd
|
@ -1131,6 +1131,60 @@ pure function ho2ro(ho) result(ro)
|
|||
end function ho2ro
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief convert homochoric to cubochoric
|
||||
!--------------------------------------------------------------------------
|
||||
pure function ho2cu(ho) result(cu)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(3) :: cu, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer, dimension(3,2) :: p
|
||||
|
||||
rs = norm2(ho)
|
||||
if (rs > R1+1.e-6_pReal) then
|
||||
cu = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
endif
|
||||
|
||||
center: if (all(dEq0(ho))) then
|
||||
cu = 0.0_pReal
|
||||
else center
|
||||
p = GetPyramidOrder(ho)
|
||||
xyz3 = ho(p(:,1))
|
||||
|
||||
! inverse M_3
|
||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||
|
||||
! inverse M_2
|
||||
qxy = sum(xyz2**2)
|
||||
|
||||
special: if (dEq0(qxy)) then
|
||||
Tinv = 0.0_pReal
|
||||
else special
|
||||
q2 = qxy + maxval(abs(xyz2))**2
|
||||
sq2 = sqrt(q2)
|
||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||
endif special
|
||||
|
||||
! inverse M_1
|
||||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
cu = xyz1(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function ho2cu
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @brief convert cubochoric to unit quaternion
|
||||
|
@ -1257,60 +1311,6 @@ pure function cu2ho(cu) result(ho)
|
|||
end function cu2ho
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief convert homochoric to cubochoric
|
||||
!--------------------------------------------------------------------------
|
||||
pure function ho2cu(ho) result(cu)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(3) :: cu, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer, dimension(3,2) :: p
|
||||
|
||||
rs = norm2(ho)
|
||||
if (rs > R1+1.e-6_pReal) then
|
||||
cu = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
endif
|
||||
|
||||
center: if (all(dEq0(ho))) then
|
||||
cu = 0.0_pReal
|
||||
else center
|
||||
p = GetPyramidOrder(ho)
|
||||
xyz3 = ho(p(:,1))
|
||||
|
||||
! inverse M_3
|
||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||
|
||||
! inverse M_2
|
||||
qxy = sum(xyz2**2)
|
||||
|
||||
special: if (dEq0(qxy)) then
|
||||
Tinv = 0.0_pReal
|
||||
else special
|
||||
q2 = qxy + maxval(abs(xyz2))**2
|
||||
sq2 = sqrt(q2)
|
||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||
endif special
|
||||
|
||||
! inverse M_1
|
||||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
cu = xyz1(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function ho2cu
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
|
|
Loading…
Reference in New Issue