skip dulplicated columns in ascii table

also add a todo list at the top
This commit is contained in:
chen 2016-10-13 11:33:38 -04:00
parent b41e40becf
commit ace06fd0e1
1 changed files with 15 additions and 2 deletions

View File

@ -12,6 +12,13 @@
# using Paraview. The current solution is using cell structured # # using Paraview. The current solution is using cell structured #
# HDF5 so that Xdmf can describe the data shape as a rectangular # # HDF5 so that Xdmf can describe the data shape as a rectangular #
# mesh rather than polyvertex. # # mesh rather than polyvertex. #
# TODO: #
# 1. remove the <ASCII_TABLE>._tmp file, basically need a way to #
# just load data from ASCII table. #
# 2. a progress monitor when transferring data from ASCII table #
# to HDF5. #
# 3. a more flexible way handle the data structure rather than a #
# xml file. #
# ------------------------------------------------------------------- # # ------------------------------------------------------------------- #
import os import os
@ -98,9 +105,11 @@ h5f.add_data("Vy", Vy)
h5f.add_data("Vz", Vz) h5f.add_data("Vz", Vz)
# add the rest of data from table # add the rest of data from table
addedLabels = ['inc']
for fi in xrange(len(labels)): for fi in xrange(len(labels)):
featureName = labels[fi] featureName = labels[fi]
if 'inc' in featureName: continue # skip increment and duplicated columns in the ASCII table
if featureName in addedLabels: continue
# remove trouble maker "("" and ")" # remove trouble maker "("" and ")"
if "(" in featureName: featureName = featureName.replace("(", "") if "(" in featureName: featureName = featureName.replace("(", "")
if ")" in featureName: featureName = featureName.replace(")", "") if ")" in featureName: featureName = featureName.replace(")", "")
@ -109,7 +118,11 @@ for fi in xrange(len(labels)):
# grab the data hook # grab the data hook
dataset = fullTable[:, featureIdx:featureIdx+featureDim] dataset = fullTable[:, featureIdx:featureIdx+featureDim]
# mapping 2D data onto a 3D rectangular mesh to get 4D data # mapping 2D data onto a 3D rectangular mesh to get 4D data
dataset = dataset.reshape((mshGridDim[0], mshGridDim[1], mshGridDim[2], # In paraview, the data is mapped as:
# --> len(z), len(y), len(x), size(data)
dataset = dataset.reshape((mshGridDim[2], mshGridDim[1], mshGridDim[0],
dataset.shape[1])) dataset.shape[1]))
# write out data # write out data
h5f.add_data(featureName, dataset) h5f.add_data(featureName, dataset)
# write down the processed label
addedLabels.append(featureName)