diff --git a/processing/post/binXY.py b/processing/post/binXY.py index e8c9c6cd6..f0b6dca79 100755 --- a/processing/post/binXY.py +++ b/processing/post/binXY.py @@ -38,6 +38,7 @@ parser.add_option('-r','--rownormalize', dest='normRow', action='store_true', help='normalize probability density in each row [%default]') parser.add_option('-c','--colnormalize', dest='normCol', action='store_true', help='normalize probability density in each column [%default]') + parser.set_defaults(bins = (10,10)) parser.set_defaults(type = ('linear','linear','linear')) parser.set_defaults(xrange = (0.0,0.0)) @@ -49,10 +50,10 @@ parser.set_defaults(normCol = False) (options,filenames) = parser.parse_args() -minmax = np.array([np.array(options.xrange), - np.array(options.yrange), - np.array(options.zrange)]) -grid = np.zeros(options.bins,'f') +minmax = np.array([np.array(options.xrange), + np.array(options.yrange), + np.array(options.zrange)]) +grid = np.zeros(options.bins,'f') result = np.zeros((options.bins[0],options.bins[1],3),'f') datainfo = { # list of requested labels per datatype @@ -63,10 +64,8 @@ datainfo = { if options.data != None: datainfo['scalar']['label'] += options.data if options.weight != None: datainfo['scalar']['label'] += [options.weight] # prevent character splitting of single string value -if len(datainfo['scalar']['label']) < 2: - parser.error('missing column labels') +# --- loop over input files ------------------------------------------------------------------------ -# --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = ['STDIN'] @@ -82,34 +81,28 @@ for name in filenames: table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table table.head_read() # read ASCII header info -# --------------- figure out columns to process and read ------------------------------------------ - active = [] - for label in datainfo['scalar']['label']: - if label in table.labels: - active.append(label) - else: - file['croak'].write('column %s not found...\n'%label) - - table.data_readArray([label for label in active]) +# --- process data --------------------------------------------------------------------------------- -# ------------------------------------------ process data ------------------------------------------ - for j in (0,1): # check data minmax for x and y - i = table.labels.index(options.data[j]) - if (minmax[i] == 0.0).all(): minmax[i] = [table.data[:,i].min(),table.data[:,i].max()] - if options.type[i].lower() == 'log': # if log scale - table.data[:,i] = np.log(table.data[:,i]) # change x,y coordinates to log - minmax[i] = np.log(minmax[i]) # change minmax to log, too + missing_labels = table.data_readArray(datainfo['scalar']['label']) + + if len(missing_labels) > 0: + file['croak'].write('column%s %s not found...\n'%('s' if len(missing_labels) > 1 else '',', '.join(missing_labels))) + table.close(dismiss = True) + continue + + for c in (0,1): # check data minmax for x and y (i = 0 and 1) + if (minmax[c] == 0.0).all(): minmax[c] = [table.data[:,c].min(),table.data[:,c].max()] + if options.type[c].lower() == 'log': # if log scale + table.data[:,c] = np.log(table.data[:,c]) # change x,y coordinates to log + minmax[c] = np.log(minmax[c]) # change minmax to log, too delta = minmax[:,1]-minmax[:,0] - xCol = table.labels.index(options.data[0]) - yCol = table.labels.index(options.data[1]) - if options.weight != None: wCol = table.labels.index(options.weight) for i in xrange(len(table.data)): - x = int(options.bins[0]*(table.data[i,xCol]-minmax[0,0])/delta[0]) - y = int(options.bins[1]*(table.data[i,yCol]-minmax[1,0])/delta[1]) + x = int(options.bins[0]*(table.data[i,0]-minmax[0,0])/delta[0]) + y = int(options.bins[1]*(table.data[i,1]-minmax[1,0])/delta[1]) if x >= 0 and x < options.bins[0] and y >= 0 and y < options.bins[1]: - grid[x,y] += 1. if options.weight == None else table.data[i,wCol] # count (weighted) occurrences + grid[x,y] += 1. if options.weight == None else table.data[i,2] # count (weighted) occurrences if options.normCol: for x in xrange(options.bins[0]): @@ -141,22 +134,24 @@ for name in filenames: minmax[1,0]+delta[1]/options.bins[1]*(y+0.5), min(1.0,max(0.0,(grid[x,y]-minmax[2,0])/delta[2]))] - for i in xrange(2): - if options.type[i].lower() == 'log': result[:,:,i] = np.exp(result[:,:,i]) + for c in (0,1): + if options.type[c].lower() == 'log': result[:,:,c] = np.exp(result[:,:,c]) if options.invert: result[:,:,2] = 1.0 - result[:,:,2] -# ------------------------------------------ assemble header --------------------------------------- +# --- assemble header ------------------------------------------------------------------------------- + table.info_clear() table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.labels = ['bin_%s'%options.data[0],'bin_%s'%options.data[1],'z'] table.head_write() -# ------------------------------------------ output result ----------------------------------------- - prefix = 'binned%s-%s_'%(options.data[0],options.data[1])+ \ - ('weighted%s_'%(options.weight) if options.weight != None else '') +# --- output result --------------------------------------------------------------------------------- + + prefix = 'binned-%s-%s_'%(options.data[0],options.data[1])+ \ + ('weighted-%s_'%(options.weight) if options.weight != None else '') np.savetxt(file['output'],result.reshape(options.bins[0]*options.bins[1],3)) - file['output'].close() # close output ASCII table + table.output_close() # close output ASCII table if file['name'] != 'STDIN': os.rename(file['name']+'_tmp',\ os.path.join(os.path.dirname(file['name']),prefix+os.path.basename(file['name'])))