easier to specify size directly
This commit is contained in:
parent
42b9ccf99e
commit
ab1ab42e75
|
@ -229,7 +229,6 @@ for name in filenames:
|
|||
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
|
||||
damask.util.croak('tessellating...')
|
||||
if options.laguerre:
|
||||
indices = Laguerre_tessellation(coords,seeds,grains,size,options.periodic,
|
||||
table.get(options.weight),options.cpus)
|
||||
|
|
|
@ -6,6 +6,7 @@ import random
|
|||
from optparse import OptionParser,OptionGroup
|
||||
|
||||
import numpy as np
|
||||
from numpy import ma
|
||||
from scipy import spatial
|
||||
|
||||
import damask
|
||||
|
@ -15,24 +16,12 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
|
||||
def kdtree_search(cloud, queryPoints):
|
||||
"""Find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)."""
|
||||
n = queryPoints.shape[0]
|
||||
distances = np.zeros(n,dtype=float)
|
||||
tree = spatial.cKDTree(cloud)
|
||||
|
||||
for i in range(n):
|
||||
distances[i], index = tree.query(queryPoints[i])
|
||||
|
||||
return distances
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options', description = """
|
||||
Distribute given number of points randomly within (a fraction of) the three-dimensional cube [0.0,0.0,0.0]--[1.0,1.0,1.0].
|
||||
Distribute given number of points randomly within rectangular cuboid.
|
||||
Reports positions with random crystal orientations in seeds file format to STDOUT.
|
||||
|
||||
""", version = scriptID)
|
||||
|
@ -41,11 +30,11 @@ parser.add_option('-N',
|
|||
dest = 'N',
|
||||
type = 'int', metavar = 'int',
|
||||
help = 'number of seed points [%default]')
|
||||
parser.add_option('-f',
|
||||
'--fraction',
|
||||
dest = 'fraction',
|
||||
parser.add_option('-s',
|
||||
'--size',
|
||||
dest = 'size',
|
||||
type = 'float', nargs = 3, metavar = 'float float float',
|
||||
help='fractions along x,y,z of unit cube to fill %default')
|
||||
help='size x,y,z of unit cube to fill %default')
|
||||
parser.add_option('-g',
|
||||
'--grid',
|
||||
dest = 'grid',
|
||||
|
@ -86,8 +75,7 @@ parser.add_option_group(group)
|
|||
group = OptionGroup(parser, "Selective Seeding",
|
||||
"More uniform distribution of seed points using Mitchell's Best Candidate Algorithm"
|
||||
)
|
||||
group.add_option( '-s',
|
||||
'--selective',
|
||||
group.add_option( '--selective',
|
||||
action = 'store_true',
|
||||
dest = 'selective',
|
||||
help = 'selective picking of seed points from random seed points')
|
||||
|
@ -103,7 +91,7 @@ parser.add_option_group(group)
|
|||
|
||||
parser.set_defaults(randomSeed = None,
|
||||
grid = (16,16,16),
|
||||
fraction = (1.0,1.0,1.0),
|
||||
size = (1.0,1.0,1.0),
|
||||
N = 20,
|
||||
weights = False,
|
||||
max = 0.0,
|
||||
|
@ -118,62 +106,55 @@ parser.set_defaults(randomSeed = None,
|
|||
(options,filenames) = parser.parse_args()
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
fraction = np.array(options.fraction)
|
||||
grid = np.array(options.grid)
|
||||
|
||||
if options.randomSeed is None: options.randomSeed = int(os.urandom(4).hex(), 16)
|
||||
np.random.seed(options.randomSeed) # init random generators
|
||||
random.seed(options.randomSeed)
|
||||
size = np.array(options.size)
|
||||
grid = np.array(options.grid)
|
||||
np.random.seed(int(os.urandom(4).hex(),16) if options.randomSeed is None else options.randomSeed)
|
||||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
remarks = []
|
||||
errors = []
|
||||
if any(grid==0):
|
||||
errors.append('zero grid dimension for {}.'.format(', '.join([['a','b','c'][x] for x in np.where(grid == 0)[0]])))
|
||||
if options.N > grid.prod()/10.:
|
||||
remarks.append('seed count exceeds 0.1 of grid points.')
|
||||
if options.selective and 4./3.*np.pi*(options.distance/2.)**3*options.N > 0.5:
|
||||
remarks.append('maximum recommended seed point count for given distance is {}'.
|
||||
format(int(3./8./np.pi/(options.distance/2.)**3)))
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
if options.N > np.prod(grid):
|
||||
damask.util.croak('More seeds than grid positions.')
|
||||
sys.exit()
|
||||
if options.selective and 4./3.*np.pi*(options.distance/2.)**3*options.N > 0.5*np.prod(size):
|
||||
vol = 4./3.*np.pi*(options.distance/2.)**3
|
||||
damask.util.croak('Recommended # of seeds is {}.'.format(int(0.5*np.prod(size)/vol)))
|
||||
|
||||
eulers = np.random.rand(options.N,3) # create random Euler triplets
|
||||
eulers[:,0] *= 360.0 # phi_1 is uniformly distributed
|
||||
eulers[:,1] = np.degrees(np.arccos(2*eulers[:,1]-1.0)) # cos(Phi) is uniformly distributed
|
||||
eulers[:,2] *= 360.0 # phi_2 is uniformly distributed
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||||
|
||||
if not options.selective:
|
||||
n = np.maximum(np.ones(3),np.array(grid*fraction),dtype=int,casting='unsafe') # find max grid indices within fraction
|
||||
meshgrid = np.meshgrid(*map(np.arange,n),indexing='ij') # create a meshgrid within fraction
|
||||
coords = np.vstack((meshgrid[0],meshgrid[1],meshgrid[2])).reshape(n.prod(),3) # assemble list of 3D coordinates
|
||||
seeds = (random.sample(coords.tolist(),options.N)+np.random.rand(options.N,3))/(n/fraction) # ... pick N of those, rattle position,
|
||||
# ... and rescale to fall within fraction
|
||||
seeds = coords[np.random.choice(coords.shape[0], options.N, replace=False)]
|
||||
else:
|
||||
seeds = np.empty((options.N,3)) # seed positions array
|
||||
seeds[0] = np.random.random(3)*grid/max(grid)
|
||||
i = 1 # start out with one given point
|
||||
if i%(options.N/100.) < 1: damask.util.croak('.',False)
|
||||
seeds = np.empty((options.N,3))
|
||||
unpicked = ma.array(np.arange(coords.shape[0]),mask=np.zeros(coords.shape[0],dtype=bool))
|
||||
first_pick = np.random.randint(coords.shape[0])
|
||||
seeds[0] = coords[first_pick]
|
||||
unpicked.mask[first_pick]=True
|
||||
|
||||
i = 1
|
||||
progress = damask.util._ProgressBar(options.N,'',50)
|
||||
while i < options.N:
|
||||
candidates = np.random.rand(options.numCandidates,3)
|
||||
distances = kdtree_search(seeds[:i],candidates)
|
||||
best = distances.argmax()
|
||||
if distances[best] > options.distance: # require minimum separation
|
||||
seeds[i] = candidates[best] # maximum separation to existing point cloud
|
||||
i += 1
|
||||
if i%(options.N/100.) < 1: damask.util.croak('.',False)
|
||||
|
||||
damask.util.croak('')
|
||||
candidates = np.random.choice(unpicked[unpicked.mask==False],replace=False,
|
||||
size=min(len(unpicked[unpicked.mask==False]),options.numCandidates))
|
||||
tree = spatial.cKDTree(seeds[:i])
|
||||
distances, dev_null = tree.query(coords[candidates])
|
||||
best = distances.argmax()
|
||||
if distances[best] > options.distance: # require minimum separation
|
||||
seeds[i] = coords[candidates[best]] # maximum separation to existing point cloud
|
||||
unpicked.mask[candidates[best]]=True
|
||||
i += 1
|
||||
progress.update(i)
|
||||
|
||||
seeds += np.broadcast_to(size/grid,seeds.shape)*(np.random.random(seeds.shape)*.5-.25) # wobble without leaving grid
|
||||
|
||||
comments = [scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
'grid\ta {}\tb {}\tc {}'.format(*grid),
|
||||
'size\tx {}\ty {}\tz {}'.format(*size),
|
||||
'randomSeed\t{}'.format(options.randomSeed),
|
||||
]
|
||||
|
||||
|
|
Loading…
Reference in New Issue