non-vectorized versions not needed anymore

using them only for testing purposes
This commit is contained in:
Martin Diehl 2020-05-16 21:56:30 +02:00
parent 9ba419c2c3
commit a90865c877
3 changed files with 658 additions and 540 deletions

View File

@ -549,67 +549,42 @@ class Rotation:
#---------- Quaternion ---------- #---------- Quaternion ----------
@staticmethod @staticmethod
def qu2om(qu): def qu2om(qu):
if len(qu.shape) == 1: qq = qu[...,0:1]**2-(qu[...,1:2]**2 + qu[...,2:3]**2 + qu[...,3:4]**2)
"""Quaternion to rotation matrix.""" om = np.block([qq + 2.0*qu[...,1:2]**2,
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2) 2.0*(qu[...,2:3]*qu[...,1:2]+qu[...,0:1]*qu[...,3:4]),
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2) 2.0*(qu[...,3:4]*qu[...,1:2]-qu[...,0:1]*qu[...,2:3]),
2.0*(qu[...,1:2]*qu[...,2:3]-qu[...,0:1]*qu[...,3:4]),
om[0,1] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3]) qq + 2.0*qu[...,2:3]**2,
om[1,0] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3]) 2.0*(qu[...,3:4]*qu[...,2:3]+qu[...,0:1]*qu[...,1:2]),
om[1,2] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1]) 2.0*(qu[...,1:2]*qu[...,3:4]+qu[...,0:1]*qu[...,2:3]),
om[2,1] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1]) 2.0*(qu[...,2:3]*qu[...,3:4]-qu[...,0:1]*qu[...,1:2]),
om[2,0] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2]) qq + 2.0*qu[...,3:4]**2,
om[0,2] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2]) ]).reshape(qu.shape[:-1]+(3,3))
else:
qq = qu[...,0:1]**2-(qu[...,1:2]**2 + qu[...,2:3]**2 + qu[...,3:4]**2)
om = np.block([qq + 2.0*qu[...,1:2]**2,
2.0*(qu[...,2:3]*qu[...,1:2]+qu[...,0:1]*qu[...,3:4]),
2.0*(qu[...,3:4]*qu[...,1:2]-qu[...,0:1]*qu[...,2:3]),
2.0*(qu[...,1:2]*qu[...,2:3]-qu[...,0:1]*qu[...,3:4]),
qq + 2.0*qu[...,2:3]**2,
2.0*(qu[...,3:4]*qu[...,2:3]+qu[...,0:1]*qu[...,1:2]),
2.0*(qu[...,1:2]*qu[...,3:4]+qu[...,0:1]*qu[...,2:3]),
2.0*(qu[...,2:3]*qu[...,3:4]-qu[...,0:1]*qu[...,1:2]),
qq + 2.0*qu[...,3:4]**2,
]).reshape(qu.shape[:-1]+(3,3))
return om if _P < 0.0 else np.swapaxes(om,(-1,-2)) return om if _P < 0.0 else np.swapaxes(om,(-1,-2))
@staticmethod @staticmethod
def qu2eu(qu): def qu2eu(qu):
"""Quaternion to Bunge-Euler angles.""" """Quaternion to Bunge-Euler angles."""
if len(qu.shape) == 1: q02 = qu[...,0:1]*qu[...,2:3]
q03 = qu[0]**2+qu[3]**2 q13 = qu[...,1:2]*qu[...,3:4]
q12 = qu[1]**2+qu[2]**2 q01 = qu[...,0:1]*qu[...,1:2]
chi = np.sqrt(q03*q12) q23 = qu[...,2:3]*qu[...,3:4]
if np.abs(q12) < 1.e-8: q03_s = qu[...,0:1]**2+qu[...,3:4]**2
eu = np.array([np.arctan2(-_P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) q12_s = qu[...,1:2]**2+qu[...,2:3]**2
elif np.abs(q03) < 1.e-8: chi = np.sqrt(q03_s*q12_s)
eu = np.array([np.arctan2( 2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
else:
eu = np.array([np.arctan2((-_P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-_P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
np.arctan2( 2.0*chi, q03-q12 ),
np.arctan2(( _P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-_P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
else:
q02 = qu[...,0:1]*qu[...,2:3]
q13 = qu[...,1:2]*qu[...,3:4]
q01 = qu[...,0:1]*qu[...,1:2]
q23 = qu[...,2:3]*qu[...,3:4]
q03_s = qu[...,0:1]**2+qu[...,3:4]**2
q12_s = qu[...,1:2]**2+qu[...,2:3]**2
chi = np.sqrt(q03_s*q12_s)
eu = np.where(np.abs(q12_s) < 1.0e-8, eu = np.where(np.abs(q12_s) < 1.0e-8,
np.block([np.arctan2(-_P*2.0*qu[...,0:1]*qu[...,3:4],qu[...,0:1]**2-qu[...,3:4]**2), np.block([np.arctan2(-_P*2.0*qu[...,0:1]*qu[...,3:4],qu[...,0:1]**2-qu[...,3:4]**2),
np.zeros(qu.shape[:-1]+(2,))]), np.zeros(qu.shape[:-1]+(2,))]),
np.where(np.abs(q03_s) < 1.0e-8, np.where(np.abs(q03_s) < 1.0e-8,
np.block([np.arctan2( 2.0*qu[...,1:2]*qu[...,2:3],qu[...,1:2]**2-qu[...,2:3]**2), np.block([np.arctan2( 2.0*qu[...,1:2]*qu[...,2:3],qu[...,1:2]**2-qu[...,2:3]**2),
np.broadcast_to(np.pi,qu.shape[:-1]+(1,)), np.broadcast_to(np.pi,qu.shape[:-1]+(1,)),
np.zeros(qu.shape[:-1]+(1,))]), np.zeros(qu.shape[:-1]+(1,))]),
np.block([np.arctan2((-_P*q02+q13)*chi, (-_P*q01-q23)*chi), np.block([np.arctan2((-_P*q02+q13)*chi, (-_P*q01-q23)*chi),
np.arctan2( 2.0*chi, q03_s-q12_s ), np.arctan2( 2.0*chi, q03_s-q12_s ),
np.arctan2(( _P*q02+q13)*chi, (-_P*q01+q23)*chi)]) np.arctan2(( _P*q02+q13)*chi, (-_P*q01+q23)*chi)])
) )
) )
# reduce Euler angles to definition range # reduce Euler angles to definition range
eu[np.abs(eu)<1.e-6] = 0.0 eu[np.abs(eu)<1.e-6] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu) eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
@ -622,65 +597,38 @@ class Rotation:
Modified version of the original formulation, should be numerically more stable Modified version of the original formulation, should be numerically more stable
""" """
if len(qu.shape) == 1: with np.errstate(invalid='ignore',divide='ignore'):
if np.abs(np.sum(qu[1:4]**2)) < 1.e-6: # set axis to [001] if the angle is 0/360 s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2)
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
elif qu[0] > 1.e-6: ax = np.where(np.broadcast_to(qu[...,0:1] < 1.0e-6,qu.shape),
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2) np.block([qu[...,1:4],np.broadcast_to(np.pi,qu.shape[:-1]+(1,))]),
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) np.block([qu[...,1:4]*s,omega]))
ax = ax = np.array([ qu[1]*s, qu[2]*s, qu[3]*s, omega ]) ax[np.sum(np.abs(qu[...,1:4])**2,axis=-1) < 1.0e-6,] = [0.0, 0.0, 1.0, 0.0]
else:
ax = ax = np.array([ qu[1], qu[2], qu[3], np.pi])
else:
with np.errstate(invalid='ignore',divide='ignore'):
s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2)
omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
ax = np.where(np.broadcast_to(qu[...,0:1] < 1.0e-6,qu.shape),
np.block([qu[...,1:4],np.broadcast_to(np.pi,qu.shape[:-1]+(1,))]),
np.block([qu[...,1:4]*s,omega]))
ax[np.sum(np.abs(qu[...,1:4])**2,axis=-1) < 1.0e-6,] = [0.0, 0.0, 1.0, 0.0]
return ax return ax
@staticmethod @staticmethod
def qu2ro(qu): def qu2ro(qu):
"""Quaternion to Rodrigues-Frank vector.""" """Quaternion to Rodrigues-Frank vector."""
if len(qu.shape) == 1: with np.errstate(invalid='ignore',divide='ignore'):
if iszero(qu[0]): s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True)
ro = np.array([qu[1], qu[2], qu[3], np.inf]) ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.0e-12,qu.shape),
else: np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.broadcast_to(np.inf,qu.shape[:-1]+(1,))]),
s = np.linalg.norm(qu[1:4]) np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s,
ro = np.array([0.0,0.0,_P,0.0] if iszero(s) else \ np.tan(np.arccos(np.clip(qu[...,0:1],-1.0,1.0)))
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))]) ])
else: )
with np.errstate(invalid='ignore',divide='ignore'): ro[np.abs(s).squeeze(-1) < 1.0e-12] = [0.0,0.0,_P,0.0]
s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True)
ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.0e-12,qu.shape),
np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.broadcast_to(np.inf,qu.shape[:-1]+(1,))]),
np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s,
np.tan(np.arccos(np.clip(qu[...,0:1],-1.0,1.0)))
])
)
ro[np.abs(s).squeeze(-1) < 1.0e-12] = [0.0,0.0,_P,0.0]
return ro return ro
@staticmethod @staticmethod
def qu2ho(qu): def qu2ho(qu):
"""Quaternion to homochoric vector.""" """Quaternion to homochoric vector."""
if len(qu.shape) == 1: with np.errstate(invalid='ignore'):
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
if np.abs(omega) < 1.0e-12: ho = np.where(np.abs(omega) < 1.0e-12,
ho = np.zeros(3) np.zeros(3),
else: qu[...,1:4]/np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) \
ho = np.array([qu[1], qu[2], qu[3]]) * (0.75*(omega - np.sin(omega)))**(1./3.))
f = 0.75 * ( omega - np.sin(omega) )
ho = ho/np.linalg.norm(ho) * f**(1./3.)
else:
with np.errstate(invalid='ignore'):
omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
ho = np.where(np.abs(omega) < 1.0e-12,
np.zeros(3),
qu[...,1:4]/np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) \
* (0.75*(omega - np.sin(omega)))**(1./3.))
return ho return ho
@staticmethod @staticmethod
@ -702,27 +650,18 @@ class Rotation:
@staticmethod @staticmethod
def om2eu(om): def om2eu(om):
"""Rotation matrix to Bunge-Euler angles.""" """Rotation matrix to Bunge-Euler angles."""
if len(om.shape) == 2: with np.errstate(invalid='ignore',divide='ignore'):
if not np.isclose(np.abs(om[2,2]),1.0,1.e-4): zeta = 1.0/np.sqrt(1.0-om[...,2,2:3]**2)
zeta = 1.0/np.sqrt(1.0-om[2,2]**2) eu = np.where(np.isclose(np.abs(om[...,2,2:3]),1.0,1e-4),
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta), np.block([np.arctan2(om[...,0,1:2],om[...,0,0:1]),
np.arccos(om[2,2]), np.pi*0.5*(1-om[...,2,2:3]),
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)]) np.zeros(om.shape[:-2]+(1,)),
else: ]),
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation np.block([np.arctan2(om[...,2,0:1]*zeta,-om[...,2,1:2]*zeta),
else: np.arccos(om[...,2,2:3]),
with np.errstate(invalid='ignore',divide='ignore'): np.arctan2(om[...,0,2:3]*zeta,+om[...,1,2:3]*zeta)
zeta = 1.0/np.sqrt(1.0-om[...,2,2:3]**2) ])
eu = np.where(np.isclose(np.abs(om[...,2,2:3]),1.0,1e-4), )
np.block([np.arctan2(om[...,0,1:2],om[...,0,0:1]),
np.pi*0.5*(1-om[...,2,2:3]),
np.zeros(om.shape[:-2]+(1,)),
]),
np.block([np.arctan2(om[...,2,0:1]*zeta,-om[...,2,1:2]*zeta),
np.arccos(om[...,2,2:3]),
np.arctan2(om[...,0,2:3]*zeta,+om[...,1,2:3]*zeta)
])
)
eu[np.abs(eu)<1.e-6] = 0.0 eu[np.abs(eu)<1.e-6] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu) eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
return eu return eu
@ -731,40 +670,23 @@ class Rotation:
@staticmethod @staticmethod
def om2ax(om): def om2ax(om):
"""Rotation matrix to axis angle pair.""" """Rotation matrix to axis angle pair."""
if len(om.shape) == 2: diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2],
ax=np.empty(4) om[...,2,0:1]-om[...,0,2:3],
om[...,0,1:2]-om[...,1,0:1]
# first get the rotation angle ])
t = 0.5*(om.trace() -1.0) diag_delta[np.abs(diag_delta)<1.e-6] = 1.0
ax[3] = np.arccos(np.clip(t,-1.0,1.0)) t = 0.5*(om.trace(axis2=-2,axis1=-1) -1.0).reshape(om.shape[:-2]+(1,))
if np.abs(ax[3])<1.e-6: w,vr = np.linalg.eig(om)
ax = np.array([ 0.0, 0.0, 1.0, 0.0]) # mask duplicated real eigenvalues
else: w[np.isclose(w[...,0],1.0+0.0j),1:] = 0.
w,vr = np.linalg.eig(om) w[np.isclose(w[...,1],1.0+0.0j),2:] = 0.
# next, find the eigenvalue (1,0j) vr = np.swapaxes(vr,-1,-2)
i = np.where(np.isclose(w,1.0+0.0j))[0][0] ax = np.where(np.abs(diag_delta)<0,
ax[0:3] = np.real(vr[0:3,i]) np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,)),
diagDelta = -_P*np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]]) np.abs(np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,))) \
diagDelta[np.abs(diagDelta)<1.e-6] = 1.0 *np.sign(diag_delta))
ax[0:3] = np.where(np.abs(diagDelta)<0, ax[0:3],np.abs(ax[0:3])*np.sign(diagDelta)) ax = np.block([ax,np.arccos(np.clip(t,-1.0,1.0))])
else: ax[np.abs(ax[...,3])<1.e-6] = [ 0.0, 0.0, 1.0, 0.0]
diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2],
om[...,2,0:1]-om[...,0,2:3],
om[...,0,1:2]-om[...,1,0:1]
])
diag_delta[np.abs(diag_delta)<1.e-6] = 1.0
t = 0.5*(om.trace(axis2=-2,axis1=-1) -1.0).reshape(om.shape[:-2]+(1,))
w,vr = np.linalg.eig(om)
# mask duplicated real eigenvalues
w[np.isclose(w[...,0],1.0+0.0j),1:] = 0.
w[np.isclose(w[...,1],1.0+0.0j),2:] = 0.
vr = np.swapaxes(vr,-1,-2)
ax = np.where(np.abs(diag_delta)<0,
np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,)),
np.abs(np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,))) \
*np.sign(diag_delta))
ax = np.block([ax,np.arccos(np.clip(t,-1.0,1.0))])
ax[np.abs(ax[...,3])<1.e-6] = [ 0.0, 0.0, 1.0, 0.0]
return ax return ax
@ -788,103 +710,61 @@ class Rotation:
@staticmethod @staticmethod
def eu2qu(eu): def eu2qu(eu):
"""Bunge-Euler angles to quaternion.""" """Bunge-Euler angles to quaternion."""
if len(eu.shape) == 1: ee = 0.5*eu
ee = 0.5*eu cPhi = np.cos(ee[...,1:2])
cPhi = np.cos(ee[1]) sPhi = np.sin(ee[...,1:2])
sPhi = np.sin(ee[1]) qu = np.block([ cPhi*np.cos(ee[...,0:1]+ee[...,2:3]),
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]), -_P*sPhi*np.cos(ee[...,0:1]-ee[...,2:3]),
-_P*sPhi*np.cos(ee[0]-ee[2]), -_P*sPhi*np.sin(ee[...,0:1]-ee[...,2:3]),
-_P*sPhi*np.sin(ee[0]-ee[2]), -_P*cPhi*np.sin(ee[...,0:1]+ee[...,2:3])])
-_P*cPhi*np.sin(ee[0]+ee[2]) ]) qu[qu[...,0]<0.0]*=-1
if qu[0] < 0.0: qu*=-1
else:
ee = 0.5*eu
cPhi = np.cos(ee[...,1:2])
sPhi = np.sin(ee[...,1:2])
qu = np.block([ cPhi*np.cos(ee[...,0:1]+ee[...,2:3]),
-_P*sPhi*np.cos(ee[...,0:1]-ee[...,2:3]),
-_P*sPhi*np.sin(ee[...,0:1]-ee[...,2:3]),
-_P*cPhi*np.sin(ee[...,0:1]+ee[...,2:3])])
qu[qu[...,0]<0.0]*=-1
return qu return qu
@staticmethod @staticmethod
def eu2om(eu): def eu2om(eu):
"""Bunge-Euler angles to rotation matrix.""" """Bunge-Euler angles to rotation matrix."""
if len(eu.shape) == 1: c = np.cos(eu)
c = np.cos(eu) s = np.sin(eu)
s = np.sin(eu) om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2],
+s[...,0:1]*c[...,2:3]+c[...,0:1]*s[...,2:3]*c[...,1:2],
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]], +s[...,2:3]*s[...,1:2],
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]], -c[...,0:1]*s[...,2:3]-s[...,0:1]*c[...,2:3]*c[...,1:2],
[+s[0]*s[1], -c[0]*s[1], +c[1] ]]) -s[...,0:1]*s[...,2:3]+c[...,0:1]*c[...,2:3]*c[...,1:2],
else: +c[...,2:3]*s[...,1:2],
c = np.cos(eu) +s[...,0:1]*s[...,1:2],
s = np.sin(eu) -c[...,0:1]*s[...,1:2],
om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2], +c[...,1:2]
+s[...,0:1]*c[...,2:3]+c[...,0:1]*s[...,2:3]*c[...,1:2], ]).reshape(eu.shape[:-1]+(3,3))
+s[...,2:3]*s[...,1:2],
-c[...,0:1]*s[...,2:3]-s[...,0:1]*c[...,2:3]*c[...,1:2],
-s[...,0:1]*s[...,2:3]+c[...,0:1]*c[...,2:3]*c[...,1:2],
+c[...,2:3]*s[...,1:2],
+s[...,0:1]*s[...,1:2],
-c[...,0:1]*s[...,1:2],
+c[...,1:2]
]).reshape(eu.shape[:-1]+(3,3))
om[np.abs(om)<1.e-12] = 0.0 om[np.abs(om)<1.e-12] = 0.0
return om return om
@staticmethod @staticmethod
def eu2ax(eu): def eu2ax(eu):
"""Bunge-Euler angles to axis angle pair.""" """Bunge-Euler angles to axis angle pair."""
if len(eu.shape) == 1: t = np.tan(eu[...,1:2]*0.5)
t = np.tan(eu[1]*0.5) sigma = 0.5*(eu[...,0:1]+eu[...,2:3])
sigma = 0.5*(eu[0]+eu[2]) delta = 0.5*(eu[...,0:1]-eu[...,2:3])
delta = 0.5*(eu[0]-eu[2]) tau = np.linalg.norm(np.block([t,np.sin(sigma)]),axis=-1,keepdims=True)
tau = np.linalg.norm([t,np.sin(sigma)]) alpha = np.where(np.abs(np.cos(sigma))<1.e-12,np.pi,2.0*np.arctan(tau/np.cos(sigma)))
alpha = np.pi if iszero(np.cos(sigma)) else \ with np.errstate(invalid='ignore',divide='ignore'):
2.0*np.arctan(tau/np.cos(sigma)) ax = np.where(np.broadcast_to(np.abs(alpha)<1.0e-12,eu.shape[:-1]+(4,)),
[0.0,0.0,1.0,0.0],
if np.abs(alpha)<1.e-6: np.block([-_P/tau*t*np.cos(delta),
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) -_P/tau*t*np.sin(delta),
else: -_P/tau* np.sin(sigma),
ax = -_P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front alpha
ax = np.append(ax,alpha) ]))
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive ax[(alpha<0.0).squeeze()] *=-1
else:
t = np.tan(eu[...,1:2]*0.5)
sigma = 0.5*(eu[...,0:1]+eu[...,2:3])
delta = 0.5*(eu[...,0:1]-eu[...,2:3])
tau = np.linalg.norm(np.block([t,np.sin(sigma)]),axis=-1,keepdims=True)
alpha = np.where(np.abs(np.cos(sigma))<1.e-12,np.pi,2.0*np.arctan(tau/np.cos(sigma)))
with np.errstate(invalid='ignore',divide='ignore'):
ax = np.where(np.broadcast_to(np.abs(alpha)<1.0e-12,eu.shape[:-1]+(4,)),
[0.0,0.0,1.0,0.0],
np.block([-_P/tau*t*np.cos(delta),
-_P/tau*t*np.sin(delta),
-_P/tau* np.sin(sigma),
alpha
]))
ax[(alpha<0.0).squeeze()] *=-1
return ax return ax
@staticmethod @staticmethod
def eu2ro(eu): def eu2ro(eu):
"""Bunge-Euler angles to Rodrigues-Frank vector.""" """Bunge-Euler angles to Rodrigues-Frank vector."""
if len(eu.shape) == 1: ax = Rotation.eu2ax(eu)
ro = Rotation.eu2ax(eu) # convert to axis angle pair representation ro = np.block([ax[...,:3],np.tan(ax[...,3:4]*.5)])
if ro[3] >= np.pi: # Differs from original implementation. check convention 5 ro[ax[...,3]>=np.pi,3] = np.inf
ro[3] = np.inf ro[np.abs(ax[...,3])<1.e-16] = [ 0.0, 0.0, _P, 0.0 ]
elif iszero(ro[3]):
ro = np.array([ 0.0, 0.0, _P, 0.0 ])
else:
ro[3] = np.tan(ro[3]*0.5)
else:
ax = Rotation.eu2ax(eu)
ro = np.block([ax[...,:3],np.tan(ax[...,3:4]*.5)])
ro[ax[...,3]>=np.pi,3] = np.inf
ro[np.abs(ax[...,3])<1.e-16] = [ 0.0, 0.0, _P, 0.0 ]
return ro return ro
@staticmethod @staticmethod
@ -902,45 +782,26 @@ class Rotation:
@staticmethod @staticmethod
def ax2qu(ax): def ax2qu(ax):
"""Axis angle pair to quaternion.""" """Axis angle pair to quaternion."""
if len(ax.shape) == 1: c = np.cos(ax[...,3:4]*.5)
if np.abs(ax[3])<1.e-6: s = np.sin(ax[...,3:4]*.5)
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ]) qu = np.where(np.abs(ax[...,3:4])<1.e-6,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s]))
else:
c = np.cos(ax[3]*0.5)
s = np.sin(ax[3]*0.5)
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
else:
c = np.cos(ax[...,3:4]*.5)
s = np.sin(ax[...,3:4]*.5)
qu = np.where(np.abs(ax[...,3:4])<1.e-6,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s]))
return qu return qu
@staticmethod @staticmethod
def ax2om(ax): def ax2om(ax):
"""Axis angle pair to rotation matrix.""" """Axis angle pair to rotation matrix."""
if len(ax.shape) == 1: c = np.cos(ax[...,3:4])
c = np.cos(ax[3]) s = np.sin(ax[...,3:4])
s = np.sin(ax[3]) omc = 1. -c
omc = 1.0-c om = np.block([c+omc*ax[...,0:1]**2,
om=np.diag(ax[0:3]**2*omc + c) omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3],
omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2],
for idx in [[0,1,2],[1,2,0],[2,0,1]]: omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3],
q = omc*ax[idx[0]] * ax[idx[1]] c+omc*ax[...,1:2]**2,
om[idx[0],idx[1]] = q + s*ax[idx[2]] omc*ax[...,1:2]*ax[...,2:3] + s*ax[...,0:1],
om[idx[1],idx[0]] = q - s*ax[idx[2]] omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2],
else: omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1],
c = np.cos(ax[...,3:4]) c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3))
s = np.sin(ax[...,3:4])
omc = 1. -c
om = np.block([c+omc*ax[...,0:1]**2,
omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3],
omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2],
omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3],
c+omc*ax[...,1:2]**2,
omc*ax[...,1:2]*ax[...,2:3] + s*ax[...,0:1],
omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2],
omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1],
c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3))
return om if _P < 0.0 else np.swapaxes(om,(-1,-2)) return om if _P < 0.0 else np.swapaxes(om,(-1,-2))
@staticmethod @staticmethod
@ -951,33 +812,19 @@ class Rotation:
@staticmethod @staticmethod
def ax2ro(ax): def ax2ro(ax):
"""Axis angle pair to Rodrigues-Frank vector.""" """Axis angle pair to Rodrigues-Frank vector."""
if len(ax.shape) == 1: ro = np.block([ax[...,:3],
if np.abs(ax[3])<1.e-6: np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
ro = [ 0.0, 0.0, _P, 0.0 ] np.inf,
else: np.tan(ax[...,3:4]*0.5))
ro = [ax[0], ax[1], ax[2]] ])
# 180 degree case ro[np.abs(ax[...,3])<1.e-6] = [.0,.0,_P,.0]
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
[np.tan(ax[3]*0.5)]
ro = np.array(ro)
else:
ro = np.block([ax[...,:3],
np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
np.inf,
np.tan(ax[...,3:4]*0.5))
])
ro[np.abs(ax[...,3])<1.e-6] = [.0,.0,_P,.0]
return ro return ro
@staticmethod @staticmethod
def ax2ho(ax): def ax2ho(ax):
"""Axis angle pair to homochoric vector.""" """Axis angle pair to homochoric vector."""
if len(ax.shape) == 1: f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0) ho = ax[...,:3] * f
ho = ax[0:3] * f
else:
f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
ho = ax[...,:3] * f
return ho return ho
@staticmethod @staticmethod
@ -1005,36 +852,19 @@ class Rotation:
@staticmethod @staticmethod
def ro2ax(ro): def ro2ax(ro):
"""Rodrigues-Frank vector to axis angle pair.""" """Rodrigues-Frank vector to axis angle pair."""
if len(ro.shape) == 1: with np.errstate(invalid='ignore',divide='ignore'):
if np.abs(ro[3]) < 1.e-6: ax = np.where(np.isfinite(ro[...,3:4]),
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]),
elif not np.isfinite(ro[3]): np.block([ro[...,0:3],np.broadcast_to(np.pi,ro[...,3:4].shape)]))
ax = np.array([ ro[0], ro[1], ro[2], np.pi ]) ax[np.abs(ro[...,3]) < 1.e-6] = np.array([ 0.0, 0.0, 1.0, 0.0 ])
else:
angle = 2.0*np.arctan(ro[3])
ta = np.linalg.norm(ro[0:3])
ax = np.array([ ro[0]*ta, ro[1]*ta, ro[2]*ta, angle ])
else:
with np.errstate(invalid='ignore',divide='ignore'):
ax = np.where(np.isfinite(ro[...,3:4]),
np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]),
np.block([ro[...,0:3],np.broadcast_to(np.pi,ro[...,3:4].shape)]))
ax[np.abs(ro[...,3]) < 1.e-6] = np.array([ 0.0, 0.0, 1.0, 0.0 ])
return ax return ax
@staticmethod @staticmethod
def ro2ho(ro): def ro2ho(ro):
"""Rodrigues-Frank vector to homochoric vector.""" """Rodrigues-Frank vector to homochoric vector."""
if len(ro.shape) == 1: f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
if np.sum(ro[0:3]**2.0) < 1.e-6: ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-6,ro[...,0:3].shape),
ho = np.zeros(3) np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
else:
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
else:
f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-6,ro[...,0:3].shape),
np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
return ho return ho
@staticmethod @staticmethod
@ -1070,31 +900,16 @@ class Rotation:
+0.0001703481934140054, -0.00012062065004116828, +0.0001703481934140054, -0.00012062065004116828,
+0.000059719705868660826, -0.00001980756723965647, +0.000059719705868660826, -0.00001980756723965647,
+0.000003953714684212874, -0.00000036555001439719544]) +0.000003953714684212874, -0.00000036555001439719544])
if len(ho.shape) == 1: hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
# normalize h and store the magnitude hm = hmag_squared.copy()
hmag_squared = np.sum(ho**2.) s = tfit[0] + tfit[1] * hmag_squared
if iszero(hmag_squared): for i in range(2,16):
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) hm *= hmag_squared
else: s += tfit[i] * hm
hm = hmag_squared with np.errstate(invalid='ignore'):
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-6,ho.shape[:-1]+(4,)),
# convert the magnitude to the rotation angle [ 0.0, 0.0, 1.0, 0.0 ],
s = tfit[0] + tfit[1] * hmag_squared np.block([ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0))]))
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
else:
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
hm = hmag_squared.copy()
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
with np.errstate(invalid='ignore'):
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-6,ho.shape[:-1]+(4,)),
[ 0.0, 0.0, 1.0, 0.0 ],
np.block([ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0))]))
return ax return ax
@staticmethod @staticmethod
@ -1113,60 +928,31 @@ class Rotation:
https://doi.org/10.1088/0965-0393/22/7/075013 https://doi.org/10.1088/0965-0393/22/7/075013
""" """
if len(ho.shape) == 1: rs = np.linalg.norm(ho,axis=-1,keepdims=True)
rs = np.linalg.norm(ho)
if np.allclose(ho,0.0,rtol=0.0,atol=1.0e-16): xyz3 = np.take_along_axis(ho,Rotation._get_pyramid_order(ho,'forward'),-1)
cu = np.zeros(3)
else:
xyz3 = ho[Rotation._get_pyramid_order(ho,'forward')]
# inverse M_3 with np.errstate(invalid='ignore',divide='ignore'):
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) ) # inverse M_3
xyz2 = xyz3[...,0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[...,2:3])) )
qxy = np.sum(xyz2**2,axis=-1,keepdims=True)
# inverse M_2 q2 = qxy + np.max(np.abs(xyz2),axis=-1,keepdims=True)**2
qxy = np.sum(xyz2**2) sq2 = np.sqrt(q2)
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2))
tt = np.clip((np.min(np.abs(xyz2),axis=-1,keepdims=True)**2\
+np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
T_inv = np.where(np.abs(xyz2[...,1:2]) <= np.abs(xyz2[...,0:1]),
np.block([np.ones_like(tt),np.arccos(tt)/np.pi*12.0]),
np.block([np.arccos(tt)/np.pi*12.0,np.ones_like(tt)]))*q
T_inv[xyz2<0.0] *= -1.0
T_inv[np.broadcast_to(np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-12),T_inv.shape)] = 0.0
cu = np.block([T_inv, np.where(xyz3[...,2:3]<0.0,-np.ones_like(xyz3[...,2:3]),np.ones_like(xyz3[...,2:3])) \
* rs/np.sqrt(6.0/np.pi),
])/ _sc
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16): cu[np.isclose(np.sum(np.abs(ho),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
Tinv = np.zeros(2) cu = np.take_along_axis(cu,Rotation._get_pyramid_order(ho,'backward'),-1)
else:
q2 = qxy + np.max(np.abs(xyz2))**2
sq2 = np.sqrt(q2)
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
np.array([np.arccos(tt)/np.pi*12.0,1.0])
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
# inverse M_1
cu = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
cu = cu[Rotation._get_pyramid_order(ho,'backward')]
else:
rs = np.linalg.norm(ho,axis=-1,keepdims=True)
xyz3 = np.take_along_axis(ho,Rotation._get_pyramid_order(ho,'forward'),-1)
with np.errstate(invalid='ignore',divide='ignore'):
# inverse M_3
xyz2 = xyz3[...,0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[...,2:3])) )
qxy = np.sum(xyz2**2,axis=-1,keepdims=True)
q2 = qxy + np.max(np.abs(xyz2),axis=-1,keepdims=True)**2
sq2 = np.sqrt(q2)
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2))
tt = np.clip((np.min(np.abs(xyz2),axis=-1,keepdims=True)**2\
+np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
T_inv = np.where(np.abs(xyz2[...,1:2]) <= np.abs(xyz2[...,0:1]),
np.block([np.ones_like(tt),np.arccos(tt)/np.pi*12.0]),
np.block([np.arccos(tt)/np.pi*12.0,np.ones_like(tt)]))*q
T_inv[xyz2<0.0] *= -1.0
T_inv[np.broadcast_to(np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-12),T_inv.shape)] = 0.0
cu = np.block([T_inv, np.where(xyz3[...,2:3]<0.0,-np.ones_like(xyz3[...,2:3]),np.ones_like(xyz3[...,2:3])) \
* rs/np.sqrt(6.0/np.pi),
])/ _sc
cu[np.isclose(np.sum(np.abs(ho),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
cu = np.take_along_axis(cu,Rotation._get_pyramid_order(ho,'backward'),-1)
return cu return cu
@ -1207,64 +993,34 @@ class Rotation:
https://doi.org/10.1088/0965-0393/22/7/075013 https://doi.org/10.1088/0965-0393/22/7/075013
""" """
if len(cu.shape) == 1: with np.errstate(invalid='ignore',divide='ignore'):
# transform to the sphere grid via the curved square, and intercept the zero point # get pyramide and scale by grid parameter ratio
if np.allclose(cu,0.0,rtol=0.0,atol=1.0e-16): XYZ = np.take_along_axis(cu,Rotation._get_pyramid_order(cu,'forward'),-1) * _sc
ho = np.zeros(3) order = np.abs(XYZ[...,1:2]) <= np.abs(XYZ[...,0:1])
else: q = np.pi/12.0 * np.where(order,XYZ[...,1:2],XYZ[...,0:1]) \
# get pyramide and scale by grid parameter ratio / np.where(order,XYZ[...,0:1],XYZ[...,1:2])
XYZ = cu[Rotation._get_pyramid_order(cu,'forward')] * _sc c = np.cos(q)
s = np.sin(q)
q = _R1*2.0**0.25/_beta/ np.sqrt(np.sqrt(2.0)-c) \
* np.where(order,XYZ[...,0:1],XYZ[...,1:2])
# intercept all the points along the z-axis T = np.block([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
ho = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
else:
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
c = np.cos(q)
s = np.sin(q)
q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
# transform to sphere grid (inverse Lambert) # transform to sphere grid (inverse Lambert)
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero c = np.sum(T**2,axis=-1,keepdims=True)
c = np.sum(T**2) s = c * np.pi/24.0 /XYZ[...,2:3]**2
s = c * np.pi/24.0 /XYZ[2]**2 c = c * np.sqrt(np.pi/24.0)/XYZ[...,2:3]
c = c * np.sqrt(np.pi/24.0)/XYZ[2] q = np.sqrt( 1.0 - s)
q = np.sqrt( 1.0 - s ) ho = np.where(np.isclose(np.sum(np.abs(XYZ[...,0:2]),axis=-1,keepdims=True),0.0,rtol=0.0,atol=1.0e-16),
ho = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ]) np.block([np.zeros_like(XYZ[...,0:2]),np.sqrt(6.0/np.pi) *XYZ[...,2:3]]),
np.block([np.where(order,T[...,0:1],T[...,1:2])*q,
np.where(order,T[...,1:2],T[...,0:1])*q,
np.sqrt(6.0/np.pi) * XYZ[...,2:3] - c])
)
ho = ho[Rotation._get_pyramid_order(cu,'backward')] ho[np.isclose(np.sum(np.abs(cu),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
else: ho = np.take_along_axis(ho,Rotation._get_pyramid_order(cu,'backward'),-1)
with np.errstate(invalid='ignore',divide='ignore'):
# get pyramide and scale by grid parameter ratio
XYZ = np.take_along_axis(cu,Rotation._get_pyramid_order(cu,'forward'),-1) * _sc
order = np.abs(XYZ[...,1:2]) <= np.abs(XYZ[...,0:1])
q = np.pi/12.0 * np.where(order,XYZ[...,1:2],XYZ[...,0:1]) \
/ np.where(order,XYZ[...,0:1],XYZ[...,1:2])
c = np.cos(q)
s = np.sin(q)
q = _R1*2.0**0.25/_beta/ np.sqrt(np.sqrt(2.0)-c) \
* np.where(order,XYZ[...,0:1],XYZ[...,1:2])
T = np.block([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
# transform to sphere grid (inverse Lambert)
c = np.sum(T**2,axis=-1,keepdims=True)
s = c * np.pi/24.0 /XYZ[...,2:3]**2
c = c * np.sqrt(np.pi/24.0)/XYZ[...,2:3]
q = np.sqrt( 1.0 - s)
ho = np.where(np.isclose(np.sum(np.abs(XYZ[...,0:2]),axis=-1,keepdims=True),0.0,rtol=0.0,atol=1.0e-16),
np.block([np.zeros_like(XYZ[...,0:2]),np.sqrt(6.0/np.pi) *XYZ[...,2:3]]),
np.block([np.where(order,T[...,0:1],T[...,1:2])*q,
np.where(order,T[...,1:2],T[...,0:1])*q,
np.sqrt(6.0/np.pi) * XYZ[...,2:3] - c])
)
ho[np.isclose(np.sum(np.abs(cu),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
ho = np.take_along_axis(ho,Rotation._get_pyramid_order(cu,'backward'),-1)
return ho return ho
@ -1288,20 +1044,10 @@ class Rotation:
https://doi.org/10.1088/0965-0393/22/7/075013 https://doi.org/10.1088/0965-0393/22/7/075013
""" """
order = {'forward':np.array([[0,1,2],[1,2,0],[2,0,1]]), order = {'forward': np.array([[0,1,2],[1,2,0],[2,0,1]]),
'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])} 'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])}
if len(xyz.shape) == 1:
if np.maximum(abs(xyz[0]),abs(xyz[1])) <= xyz[2] or \ p = np.where(np.maximum(np.abs(xyz[...,0]),np.abs(xyz[...,1])) <= np.abs(xyz[...,2]),0,
np.maximum(abs(xyz[0]),abs(xyz[1])) <=-xyz[2]: np.where(np.maximum(np.abs(xyz[...,1]),np.abs(xyz[...,2])) <= np.abs(xyz[...,0]),1,2))
p = 0
elif np.maximum(abs(xyz[1]),abs(xyz[2])) <= xyz[0] or \
np.maximum(abs(xyz[1]),abs(xyz[2])) <=-xyz[0]:
p = 1
elif np.maximum(abs(xyz[2]),abs(xyz[0])) <= xyz[1] or \
np.maximum(abs(xyz[2]),abs(xyz[0])) <=-xyz[1]:
p = 2
else:
p = np.where(np.maximum(np.abs(xyz[...,0]),np.abs(xyz[...,1])) <= np.abs(xyz[...,2]),0,
np.where(np.maximum(np.abs(xyz[...,1]),np.abs(xyz[...,2])) <= np.abs(xyz[...,0]),1,2))
return order[direction][p] return order[direction][p]

View File

@ -0,0 +1,399 @@
####################################################################################################
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
####################################################################################################
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are
# permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice, this list
# of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice, this
# list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
# of its contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
####################################################################################################
import numpy as np
_P = -1
# parameters for conversion from/to cubochoric
_sc = np.pi**(1./6.)/6.**(1./6.)
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
_R1 = (3.*np.pi/4.)**(1./3.)
def iszero(a):
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
#---------- Quaternion ----------
def qu2om(qu):
"""Quaternion to rotation matrix."""
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
om[0,1] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
om[1,0] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
om[1,2] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
om[2,1] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
om[2,0] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
om[0,2] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
return om if _P < 0.0 else np.swapaxes(om,(-1,-2))
def qu2eu(qu):
"""Quaternion to Bunge-Euler angles."""
q03 = qu[0]**2+qu[3]**2
q12 = qu[1]**2+qu[2]**2
chi = np.sqrt(q03*q12)
if np.abs(q12) < 1.e-8:
eu = np.array([np.arctan2(-_P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0])
elif np.abs(q03) < 1.e-8:
eu = np.array([np.arctan2( 2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
else:
eu = np.array([np.arctan2((-_P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-_P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
np.arctan2( 2.0*chi, q03-q12 ),
np.arctan2(( _P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-_P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
# reduce Euler angles to definition range
eu[np.abs(eu)<1.e-6] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
return eu
def qu2ax(qu):
"""
Quaternion to axis angle pair.
Modified version of the original formulation, should be numerically more stable
"""
if np.abs(np.sum(qu[1:4]**2)) < 1.e-6: # set axis to [001] if the angle is 0/360
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
elif qu[0] > 1.e-6:
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
ax = ax = np.array([ qu[1]*s, qu[2]*s, qu[3]*s, omega ])
else:
ax = ax = np.array([ qu[1], qu[2], qu[3], np.pi])
return ax
def qu2ro(qu):
"""Quaternion to Rodrigues-Frank vector."""
if iszero(qu[0]):
ro = np.array([qu[1], qu[2], qu[3], np.inf])
else:
s = np.linalg.norm(qu[1:4])
ro = np.array([0.0,0.0,_P,0.0] if iszero(s) else \
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))])
return ro
def qu2ho(qu):
"""Quaternion to homochoric vector."""
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
if np.abs(omega) < 1.0e-12:
ho = np.zeros(3)
else:
ho = np.array([qu[1], qu[2], qu[3]])
f = 0.75 * ( omega - np.sin(omega) )
ho = ho/np.linalg.norm(ho) * f**(1./3.)
return ho
#---------- Rotation matrix ----------
def om2eu(om):
"""Rotation matrix to Bunge-Euler angles."""
if not np.isclose(np.abs(om[2,2]),1.0,1.e-4):
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
np.arccos(om[2,2]),
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
else:
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
eu[np.abs(eu)<1.e-6] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
return eu
def om2ax(om):
"""Rotation matrix to axis angle pair."""
ax=np.empty(4)
# first get the rotation angle
t = 0.5*(om.trace() -1.0)
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
if np.abs(ax[3])<1.e-6:
ax = np.array([ 0.0, 0.0, 1.0, 0.0])
else:
w,vr = np.linalg.eig(om)
# next, find the eigenvalue (1,0j)
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
ax[0:3] = np.real(vr[0:3,i])
diagDelta = -_P*np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
diagDelta[np.abs(diagDelta)<1.e-6] = 1.0
ax[0:3] = np.where(np.abs(diagDelta)<0, ax[0:3],np.abs(ax[0:3])*np.sign(diagDelta))
return ax
#---------- Bunge-Euler angles ----------
def eu2qu(eu):
"""Bunge-Euler angles to quaternion."""
ee = 0.5*eu
cPhi = np.cos(ee[1])
sPhi = np.sin(ee[1])
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
-_P*sPhi*np.cos(ee[0]-ee[2]),
-_P*sPhi*np.sin(ee[0]-ee[2]),
-_P*cPhi*np.sin(ee[0]+ee[2]) ])
if qu[0] < 0.0: qu*=-1
return qu
def eu2om(eu):
"""Bunge-Euler angles to rotation matrix."""
c = np.cos(eu)
s = np.sin(eu)
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
om[np.abs(om)<1.e-12] = 0.0
return om
def eu2ax(eu):
"""Bunge-Euler angles to axis angle pair."""
t = np.tan(eu[1]*0.5)
sigma = 0.5*(eu[0]+eu[2])
delta = 0.5*(eu[0]-eu[2])
tau = np.linalg.norm([t,np.sin(sigma)])
alpha = np.pi if iszero(np.cos(sigma)) else \
2.0*np.arctan(tau/np.cos(sigma))
if np.abs(alpha)<1.e-6:
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
else:
ax = -_P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front
ax = np.append(ax,alpha)
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
return ax
def eu2ro(eu):
"""Bunge-Euler angles to Rodrigues-Frank vector."""
ro = eu2ax(eu) # convert to axis angle pair representation
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
ro[3] = np.inf
elif iszero(ro[3]):
ro = np.array([ 0.0, 0.0, _P, 0.0 ])
else:
ro[3] = np.tan(ro[3]*0.5)
return ro
#---------- Axis angle pair ----------
def ax2qu(ax):
"""Axis angle pair to quaternion."""
if np.abs(ax[3])<1.e-6:
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
else:
c = np.cos(ax[3]*0.5)
s = np.sin(ax[3]*0.5)
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
return qu
def ax2om(ax):
"""Axis angle pair to rotation matrix."""
c = np.cos(ax[3])
s = np.sin(ax[3])
omc = 1.0-c
om=np.diag(ax[0:3]**2*omc + c)
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
q = omc*ax[idx[0]] * ax[idx[1]]
om[idx[0],idx[1]] = q + s*ax[idx[2]]
om[idx[1],idx[0]] = q - s*ax[idx[2]]
return om if _P < 0.0 else np.swapaxes(om,(-1,-2))
def ax2ro(ax):
"""Axis angle pair to Rodrigues-Frank vector."""
if np.abs(ax[3])<1.e-6:
ro = [ 0.0, 0.0, _P, 0.0 ]
else:
ro = [ax[0], ax[1], ax[2]]
# 180 degree case
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
[np.tan(ax[3]*0.5)]
ro = np.array(ro)
return ro
def ax2ho(ax):
"""Axis angle pair to homochoric vector."""
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
ho = ax[0:3] * f
return ho
#---------- Rodrigues-Frank vector ----------
def ro2ax(ro):
"""Rodrigues-Frank vector to axis angle pair."""
if np.abs(ro[3]) < 1.e-6:
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
elif not np.isfinite(ro[3]):
ax = np.array([ ro[0], ro[1], ro[2], np.pi ])
else:
angle = 2.0*np.arctan(ro[3])
ta = np.linalg.norm(ro[0:3])
ax = np.array([ ro[0]*ta, ro[1]*ta, ro[2]*ta, angle ])
return ax
def ro2ho(ro):
"""Rodrigues-Frank vector to homochoric vector."""
if np.sum(ro[0:3]**2.0) < 1.e-6:
ho = np.zeros(3)
else:
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
return ho
#---------- Homochoric vector----------
def ho2ax(ho):
"""Homochoric vector to axis angle pair."""
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
-0.024999992127593126, -0.003928701544781374,
-0.0008152701535450438, -0.0002009500426119712,
-0.00002397986776071756, -0.00008202868926605841,
+0.00012448715042090092, -0.0001749114214822577,
+0.0001703481934140054, -0.00012062065004116828,
+0.000059719705868660826, -0.00001980756723965647,
+0.000003953714684212874, -0.00000036555001439719544])
# normalize h and store the magnitude
hmag_squared = np.sum(ho**2.)
if iszero(hmag_squared):
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
else:
hm = hmag_squared
# convert the magnitude to the rotation angle
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
return ax
def ho2cu(ho):
"""
Homochoric vector to cubochoric vector.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
rs = np.linalg.norm(ho)
if np.allclose(ho,0.0,rtol=0.0,atol=1.0e-16):
cu = np.zeros(3)
else:
xyz3 = ho[_get_pyramid_order(ho,'forward')]
# inverse M_3
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
# inverse M_2
qxy = np.sum(xyz2**2)
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16):
Tinv = np.zeros(2)
else:
q2 = qxy + np.max(np.abs(xyz2))**2
sq2 = np.sqrt(q2)
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
np.array([np.arccos(tt)/np.pi*12.0,1.0])
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
# inverse M_1
cu = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
cu = cu[_get_pyramid_order(ho,'backward')]
return cu
#---------- Cubochoric ----------
def cu2ho(cu):
"""
Cubochoric vector to homochoric vector.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
# transform to the sphere grid via the curved square, and intercept the zero point
if np.allclose(cu,0.0,rtol=0.0,atol=1.0e-16):
ho = np.zeros(3)
else:
# get pyramide and scale by grid parameter ratio
XYZ = cu[_get_pyramid_order(cu,'forward')] * _sc
# intercept all the points along the z-axis
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
ho = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
else:
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
c = np.cos(q)
s = np.sin(q)
q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
# transform to sphere grid (inverse Lambert)
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
c = np.sum(T**2)
s = c * np.pi/24.0 /XYZ[2]**2
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
q = np.sqrt( 1.0 - s )
ho = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
ho = ho[_get_pyramid_order(cu,'backward')]
return ho
def _get_pyramid_order(xyz,direction=None):
"""
Get order of the coordinates.
Depending on the pyramid in which the point is located, the order need to be adjusted.
Parameters
----------
xyz : numpy.ndarray
coordinates of a point on a uniform refinable grid on a ball or
in a uniform refinable cubical grid.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
order = {'forward':np.array([[0,1,2],[1,2,0],[2,0,1]]),
'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])}
if np.maximum(abs(xyz[0]),abs(xyz[1])) <= xyz[2] or \
np.maximum(abs(xyz[0]),abs(xyz[1])) <=-xyz[2]:
p = 0
elif np.maximum(abs(xyz[1]),abs(xyz[2])) <= xyz[0] or \
np.maximum(abs(xyz[1]),abs(xyz[2])) <=-xyz[0]:
p = 1
elif np.maximum(abs(xyz[2]),abs(xyz[0])) <= xyz[1] or \
np.maximum(abs(xyz[2]),abs(xyz[0])) <=-xyz[1]:
p = 2
return order[direction][p]

View File

@ -4,6 +4,7 @@ import pytest
import numpy as np import numpy as np
from damask import Rotation from damask import Rotation
import rotation_conversion
n = 1100 n = 1100
atol=1.e-4 atol=1.e-4
@ -181,111 +182,83 @@ class TestRotation:
with pytest.raises(ValueError): with pytest.raises(ValueError):
function(invalid) function(invalid)
@pytest.mark.parametrize('conversion',[Rotation.qu2om, @pytest.mark.parametrize('vectorized, single',[(Rotation.qu2om,rotation_conversion.qu2om),
Rotation.qu2eu, (Rotation.qu2eu,rotation_conversion.qu2eu),
Rotation.qu2ax, (Rotation.qu2ax,rotation_conversion.qu2ax),
Rotation.qu2ro, (Rotation.qu2ro,rotation_conversion.qu2ro),
Rotation.qu2ho, (Rotation.qu2ho,rotation_conversion.qu2ho)])
Rotation.qu2cu def test_quaternion_vectorization(self,default,vectorized,single):
])
def test_quaternion_vectorization(self,default,conversion):
qu = np.array([rot.as_quaternion() for rot in default]) qu = np.array([rot.as_quaternion() for rot in default])
conversion(qu.reshape(qu.shape[0]//2,-1,4)) vectorized(qu.reshape(qu.shape[0]//2,-1,4))
co = conversion(qu) co = vectorized(qu)
for q,c in zip(qu,co): for q,c in zip(qu,co):
print(q,c) print(q,c)
assert np.allclose(conversion(q),c) assert np.allclose(single(q),c) and np.allclose(single(q),vectorized(q))
@pytest.mark.parametrize('conversion',[Rotation.om2qu,
Rotation.om2eu, @pytest.mark.parametrize('vectorized, single',[(Rotation.om2eu,rotation_conversion.om2eu),
Rotation.om2ax, (Rotation.om2ax,rotation_conversion.om2ax)])
Rotation.om2ro, def test_matrix_vectorization(self,default,vectorized,single):
Rotation.om2ho,
Rotation.om2cu
])
def test_matrix_vectorization(self,default,conversion):
om = np.array([rot.as_matrix() for rot in default]) om = np.array([rot.as_matrix() for rot in default])
conversion(om.reshape(om.shape[0]//2,-1,3,3)) vectorized(om.reshape(om.shape[0]//2,-1,3,3))
co = conversion(om) co = vectorized(om)
for o,c in zip(om,co): for o,c in zip(om,co):
print(o,c) print(o,c)
assert np.allclose(conversion(o),c) assert np.allclose(single(o),c) and np.allclose(single(o),vectorized(o))
@pytest.mark.parametrize('conversion',[Rotation.eu2qu, @pytest.mark.parametrize('vectorized, single',[(Rotation.eu2qu,rotation_conversion.eu2qu),
Rotation.eu2om, (Rotation.eu2om,rotation_conversion.eu2om),
Rotation.eu2ax, (Rotation.eu2ax,rotation_conversion.eu2ax),
Rotation.eu2ro, (Rotation.eu2ro,rotation_conversion.eu2ro)])
Rotation.eu2ho, def test_Euler_vectorization(self,default,vectorized,single):
Rotation.eu2cu
])
def test_Euler_vectorization(self,default,conversion):
eu = np.array([rot.as_Eulers() for rot in default]) eu = np.array([rot.as_Eulers() for rot in default])
conversion(eu.reshape(eu.shape[0]//2,-1,3)) vectorized(eu.reshape(eu.shape[0]//2,-1,3))
co = conversion(eu) co = vectorized(eu)
for e,c in zip(eu,co): for e,c in zip(eu,co):
print(e,c) print(e,c)
assert np.allclose(conversion(e),c) assert np.allclose(single(e),c) and np.allclose(single(e),vectorized(e))
@pytest.mark.parametrize('conversion',[Rotation.ax2qu, @pytest.mark.parametrize('vectorized, single',[(Rotation.ax2qu,rotation_conversion.ax2qu),
Rotation.ax2om, (Rotation.ax2om,rotation_conversion.ax2om),
Rotation.ax2eu, (Rotation.ax2ro,rotation_conversion.ax2ro),
Rotation.ax2ro, (Rotation.ax2ho,rotation_conversion.ax2ho)])
Rotation.ax2ho, def test_axisAngle_vectorization(self,default,vectorized,single):
Rotation.ax2cu
])
def test_axisAngle_vectorization(self,default,conversion):
ax = np.array([rot.as_axis_angle() for rot in default]) ax = np.array([rot.as_axis_angle() for rot in default])
conversion(ax.reshape(ax.shape[0]//2,-1,4)) vectorized(ax.reshape(ax.shape[0]//2,-1,4))
co = conversion(ax) co = vectorized(ax)
for a,c in zip(ax,co): for a,c in zip(ax,co):
print(a,c) print(a,c)
assert np.allclose(conversion(a),c) assert np.allclose(single(a),c) and np.allclose(single(a),vectorized(a))
@pytest.mark.parametrize('conversion',[Rotation.ro2qu, @pytest.mark.parametrize('vectorized, single',[(Rotation.ro2ax,rotation_conversion.ro2ax),
Rotation.ro2om, (Rotation.ro2ho,rotation_conversion.ro2ho)])
Rotation.ro2eu, def test_Rodrigues_vectorization(self,default,vectorized,single):
Rotation.ro2ax,
Rotation.ro2ho,
Rotation.ro2cu
])
def test_Rodrigues_vectorization(self,default,conversion):
ro = np.array([rot.as_Rodrigues() for rot in default]) ro = np.array([rot.as_Rodrigues() for rot in default])
conversion(ro.reshape(ro.shape[0]//2,-1,4)) vectorized(ro.reshape(ro.shape[0]//2,-1,4))
co = conversion(ro) co = vectorized(ro)
for r,c in zip(ro,co): for r,c in zip(ro,co):
print(r,c) print(r,c)
assert np.allclose(conversion(r),c) assert np.allclose(single(r),c) and np.allclose(single(r),vectorized(r))
@pytest.mark.parametrize('conversion',[Rotation.ho2qu, @pytest.mark.parametrize('vectorized, single',[(Rotation.ho2ax,rotation_conversion.ho2ax),
Rotation.ho2om, (Rotation.ho2cu,rotation_conversion.ho2cu)])
Rotation.ho2eu, def test_homochoric_vectorization(self,default,vectorized,single):
Rotation.ho2ax,
Rotation.ho2ro,
Rotation.ho2cu
])
def test_homochoric_vectorization(self,default,conversion):
ho = np.array([rot.as_homochoric() for rot in default]) ho = np.array([rot.as_homochoric() for rot in default])
conversion(ho.reshape(ho.shape[0]//2,-1,3)) vectorized(ho.reshape(ho.shape[0]//2,-1,3))
co = conversion(ho) co = vectorized(ho)
for h,c in zip(ho,co): for h,c in zip(ho,co):
print(h,c) print(h,c)
assert np.allclose(conversion(h),c) assert np.allclose(single(h),c) and np.allclose(single(h),vectorized(h))
@pytest.mark.parametrize('conversion',[Rotation.cu2qu, @pytest.mark.parametrize('vectorized, single',[(Rotation.cu2ho,rotation_conversion.cu2ho)])
Rotation.cu2om, def test_cubochoric_vectorization(self,default,vectorized,single):
Rotation.cu2eu,
Rotation.cu2ax,
Rotation.cu2ro,
Rotation.cu2ho
])
def test_cubochoric_vectorization(self,default,conversion):
cu = np.array([rot.as_cubochoric() for rot in default]) cu = np.array([rot.as_cubochoric() for rot in default])
conversion(cu.reshape(cu.shape[0]//2,-1,3)) vectorized(cu.reshape(cu.shape[0]//2,-1,3))
co = conversion(cu) co = vectorized(cu)
for u,c in zip(cu,co): for u,c in zip(cu,co):
print(u,c) print(u,c)
assert np.allclose(conversion(u),c) assert np.allclose(single(u),c) and np.allclose(single(u),vectorized(u))
@pytest.mark.parametrize('direction',['forward', @pytest.mark.parametrize('direction',['forward',
'backward']) 'backward'])