updated restart test, deviations seems to be related to tolerance in stress BC

This commit is contained in:
Martin Diehl 2014-08-04 17:50:01 +00:00
parent 18341c81bf
commit a787d66763
4 changed files with 14 additions and 16 deletions

View File

@ -210,7 +210,7 @@ subroutine CPFEM_init
m = 0_pInt m = 0_pInt
readInstances: do ph = 1_pInt, size(phase_plasticity) readInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state(1,:)) do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt m = m+1_pInt
read(777,rec=m) plasticState(ph)%state0(k,l) read(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo enddo; enddo
@ -224,6 +224,7 @@ subroutine CPFEM_init
m = m+1_pInt m = m+1_pInt
read(777,rec=m) homogenization_state0(j,k)%p(l) read(777,rec=m) homogenization_state0(j,k)%p(l)
enddo enddo
enddo; enddo enddo; enddo
close (777) close (777)
#if defined(Marc4DAMASK) || defined(Abaqus) #if defined(Marc4DAMASK) || defined(Abaqus)
@ -403,7 +404,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
forall ( i = 1:size(plasticState)) plasticState(i)%state0= plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array forall ( i = 1:size(plasticState)) plasticState(i)%state0= plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
forall ( i = 1:size(damageState)) damageState(i)%state0 = damageState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array forall ( i = 1:size(damageState)) damageState(i)%state0 = damageState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
forall ( i = 1:size(thermalState)) thermalState(i)%state0= thermalState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array forall ( i = 1:size(thermalState)) thermalState(i)%state0= thermalState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
write(6,'(a)') '<< CPFEM >> aging states' write(6,'(a)') '<< CPFEM >> aging states'
if (debug_e <= mesh_NcpElems .and. debug_i <= mesh_maxNips) then if (debug_e <= mesh_NcpElems .and. debug_i <= mesh_maxNips) then
write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') & write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') &
@ -424,7 +425,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
! * dump the last converged values of each essential variable to a binary file ! * dump the last converged values of each essential variable to a binary file
if (restartWrite) then if (restartWrite) then
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) & if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) &
write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files' write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files'
call IO_write_jobRealFile(777,'recordedPhase',size(material_phase)) call IO_write_jobRealFile(777,'recordedPhase',size(material_phase))
@ -455,7 +456,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
m = 0_pInt m = 0_pInt
writeInstances: do ph = 1_pInt, size(phase_plasticity) writeInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state(1,:)) do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt m = m+1_pInt
write(777,rec=m) plasticState(ph)%state0(k,l) write(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo enddo; enddo
@ -559,14 +560,12 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
endif endif
!* map stress and stiffness (or return odd values if terminally ill) !* map stress and stiffness (or return odd values if terminally ill)
#if defined(Marc4DAMASK) || defined(Abaqus)
if ( terminallyIll ) then if ( terminallyIll ) then
#if defined(Marc4DAMASK) || defined(Abaqus)
call random_number(rnd) call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6) CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6)
#endif
else else
if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip
materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP) materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP)
@ -575,7 +574,6 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = & materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = &
materialpoint_results(1:materialpoint_sizeResults,1,elCP) materialpoint_results(1:materialpoint_sizeResults,1,elCP)
endif endif
#if defined(Marc4DAMASK) || defined(Abaqus)
! translate from P to CS ! translate from P to CS
Kirchhoff = math_mul33x33(materialpoint_P(1:3,1:3,ip,elCP), math_transpose33(materialpoint_F(1:3,1:3,ip,elCP))) Kirchhoff = math_mul33x33(materialpoint_P(1:3,1:3,ip,elCP), math_transpose33(materialpoint_F(1:3,1:3,ip,elCP)))
J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP)) J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP))
@ -595,8 +593,8 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
forall(i=1:3, j=1:3,k=1:3,l=1:3) & forall(i=1:3, j=1:3,k=1:3,l=1:3) &
H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k)) H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k))
CPFEM_dcsde(1:6,1:6,ip,elCP) = math_Mandel3333to66(J_inverse * H_sym) CPFEM_dcsde(1:6,1:6,ip,elCP) = math_Mandel3333to66(J_inverse * H_sym)
#endif
endif endif
#endif
endif endif
#if defined(Marc4DAMASK) || defined(Abaqus) #if defined(Marc4DAMASK) || defined(Abaqus)
@ -637,7 +635,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature, dt, elFE, ip)
#if defined(Marc4DAMASK) || defined(Abaqus) #if defined(Marc4DAMASK) || defined(Abaqus)
!*** warn if stiffness close to zero !*** warn if stiffness close to zero
if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip) if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip)
!*** copy to output if required (FEM solver) !*** copy to output if using commercial FEM solver
cauchyStress = CPFEM_cs (1:6, ip,elCP) cauchyStress = CPFEM_cs (1:6, ip,elCP)
jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP) jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP)
#endif #endif

View File

@ -827,14 +827,13 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
integer(pInt) :: & integer(pInt) :: &
calcMode, & !< CPFEM mode for calculation calcMode, & !< CPFEM mode for calculation
collectMode, & !< CPFEM mode for collection
j,k j,k
real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF
real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet
write(6,'(/,a)') ' ... evaluating constitutive response ......................................' write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
calcMode = CPFEM_CALCRESULTS calcMode = CPFEM_CALCRESULTS
collectMode = CPFEM_COLLECT
if (forwardData) then ! aging results if (forwardData) then ! aging results
calcMode = ior(calcMode, CPFEM_AGERESULTS) calcMode = ior(calcMode, CPFEM_AGERESULTS)
materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid)]) materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid)])
@ -843,7 +842,7 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
calcMode = iand(calcMode, not(CPFEM_AGERESULTS)) calcMode = iand(calcMode, not(CPFEM_AGERESULTS))
endif endif
call CPFEM_general(collectMode,F_lastInc(1:3,1:3,1,1,1),F(1:3,1:3,1,1,1), & ! collect mode handles Jacobian backup / restoration call CPFEM_general(CPFEM_COLLECT,F_lastInc(1:3,1:3,1,1,1),F(1:3,1:3,1,1,1), &
temperature,timeinc,1_pInt,1_pInt) temperature,timeinc,1_pInt,1_pInt)
crystallite_temperature = temperature crystallite_temperature = temperature

View File

@ -608,6 +608,7 @@ subroutine constitutive_phenopowerlaw_stateInit(ph,instance)
i i
real(pReal), dimension(plasticState(ph)%sizeState) :: & real(pReal), dimension(plasticState(ph)%sizeState) :: &
tempState tempState
tempState = 0.0_pReal tempState = 0.0_pReal
do i = 1_pInt,lattice_maxNslipFamily do i = 1_pInt,lattice_maxNslipFamily
tempState(1+sum(constitutive_phenopowerlaw_Nslip(1:i-1,instance)) : & tempState(1+sum(constitutive_phenopowerlaw_Nslip(1:i-1,instance)) : &
@ -624,8 +625,8 @@ subroutine constitutive_phenopowerlaw_stateInit(ph,instance)
enddo enddo
plasticState(ph)%state0(:,:) = spread(tempState,2,size(plasticState(ph)%state0(1,:))) plasticState(ph)%state0(:,:) = spread(tempState,2,size(plasticState(ph)%state0(1,:)))
end subroutine constitutive_phenopowerlaw_stateInit
end subroutine constitutive_phenopowerlaw_stateInit
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------

View File

@ -3052,9 +3052,9 @@ subroutine crystallite_integrateStateFPI()
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = mappingConstitutive(2,g,i,e) p = mappingConstitutive(2,g,i,e)
c = mappingConstitutive(1,g,i,e) c = mappingConstitutive(1,g,i,e)
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or.& if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or.&
any(damageState(p)%dotState(:,c) /= damageState(p)%dotState(:,c)) .or.& any(damageState(p)%dotState(:,c) /= damageState(p)%dotState(:,c)) .or.&
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c))) then !NaN occured in dotState any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c))) then !NaN occured in dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local... if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local...
!$OMP CRITICAL (checkTodo) !$OMP CRITICAL (checkTodo)