changed internal quaternion representation to q,p and simplified math
This commit is contained in:
parent
1d7172c971
commit
a7554891a4
|
@ -48,48 +48,42 @@ class Quaternion:
|
|||
"""
|
||||
|
||||
def __init__(self,
|
||||
quatArray = [1.0,0.0,0.0,0.0]):
|
||||
quat = None,
|
||||
q = 1.0,
|
||||
p = np.zeros(3,dtype=float)):
|
||||
"""Initializes to identity unless specified"""
|
||||
(self.w,
|
||||
self.x,
|
||||
self.y,
|
||||
self.z ) = quatArray
|
||||
self.q = quat[0] if quat is not None else q
|
||||
self.p = np.array(quat[1:4]) if quat is not None else p
|
||||
self.homomorph()
|
||||
|
||||
def __iter__(self):
|
||||
"""Components"""
|
||||
return iter([self.w,self.x,self.y,self.z])
|
||||
return iter(self.asList())
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy"""
|
||||
Q = Quaternion([self.w,self.x,self.y,self.z])
|
||||
Q = Quaternion(q=self.q,p=self.p)
|
||||
return Q
|
||||
|
||||
copy = __copy__
|
||||
|
||||
def __repr__(self):
|
||||
"""Readable string"""
|
||||
return 'Quaternion(real=%+.6f, imag=<%+.6f, %+.6f, %+.6f>)' % (self.w, self.x, self.y, self.z)
|
||||
return 'Quaternion(real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(q=self.q,p=self.p)
|
||||
|
||||
def __pow__(self, exponent):
|
||||
"""Power"""
|
||||
omega = math.acos(self.w)
|
||||
vRescale = math.sin(exponent*omega)/math.sin(omega)
|
||||
Q = Quaternion()
|
||||
Q.w = math.cos(exponent*omega)
|
||||
Q.x = self.x * vRescale
|
||||
Q.y = self.y * vRescale
|
||||
Q.z = self.z * vRescale
|
||||
omega = math.acos(self.q)
|
||||
Q.q = math.cos(exponent*omega)
|
||||
Q.p = self.p * math.sin(exponent*omega)/math.sin(omega)
|
||||
return Q
|
||||
|
||||
def __ipow__(self, exponent):
|
||||
"""In-place power"""
|
||||
omega = math.acos(self.w)
|
||||
vRescale = math.sin(exponent*omega)/math.sin(omega)
|
||||
self.w = np.cos(exponent*omega)
|
||||
self.x *= vRescale
|
||||
self.y *= vRescale
|
||||
self.z *= vRescale
|
||||
omega = math.acos(self.q[0])
|
||||
self.q = math.cos(exponent*omega)
|
||||
self.p *= math.sin(exponent*omega)/math.sin(omega)
|
||||
return self
|
||||
|
||||
def __mul__(self, other):
|
||||
|
@ -97,45 +91,20 @@ class Quaternion:
|
|||
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||
P = -1.0
|
||||
try: # quaternion
|
||||
Aw = self.w
|
||||
Ax = self.x
|
||||
Ay = self.y
|
||||
Az = self.z
|
||||
Bw = other.w
|
||||
Bx = other.x
|
||||
By = other.y
|
||||
Bz = other.z
|
||||
Q = Quaternion()
|
||||
Q.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||||
Q.x = + Ax * Bw + Aw * Bx + P * (Ay * Bz - Az * By)
|
||||
Q.y = + Ay * Bw + Aw * By + P * (Az * Bx - Ax * Bz)
|
||||
Q.z = + Az * Bw + Aw * Bz + P * (Ax * By - Ay * Bx)
|
||||
Q.q = self.q*other.q - np.dot(self.p,other.p)
|
||||
Q.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
||||
return Q
|
||||
except: pass
|
||||
try: # vector (perform active rotation, i.e. q*v*q.conjugated)
|
||||
w = self.w
|
||||
x = self.x
|
||||
y = self.y
|
||||
z = self.z
|
||||
Vx = other[0]
|
||||
Vy = other[1]
|
||||
Vz = other[2]
|
||||
|
||||
A = w**2 - x**2 - y**2 - z**2
|
||||
B = 2.0*(x*Vx + y*Vy + z*Vz)
|
||||
|
||||
return np.array([
|
||||
A*Vx + B*x + 2*P*w * (y*Vz - z*Vy),
|
||||
A*Vy + B*y + 2*P*w * (z*Vx - x*Vz),
|
||||
A*Vz + B*z + 2*P*w * (x*Vy - y*Vx),
|
||||
])
|
||||
try: # vector (perform passive rotation)
|
||||
return (self.q*self.q - np.dot(self.p,self.p)) * np.array(other[:3]) \
|
||||
+ 2.0*np.dot(self.p,other[:3]) * self.p \
|
||||
+ 2.0*P*self.q * np.cross(self.p,other[:3])
|
||||
except: pass
|
||||
try: # scalar
|
||||
Q = self.copy()
|
||||
Q.w *= other
|
||||
Q.x *= other
|
||||
Q.y *= other
|
||||
Q.z *= other
|
||||
Q.q *= other
|
||||
Q.p *= other
|
||||
return Q
|
||||
except:
|
||||
return self.copy()
|
||||
|
@ -145,69 +114,49 @@ class Quaternion:
|
|||
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||
P = -1.0
|
||||
try: # Quaternion
|
||||
Aw = self.w
|
||||
Ax = self.x
|
||||
Ay = self.y
|
||||
Az = self.z
|
||||
Bw = other.w
|
||||
Bx = other.x
|
||||
By = other.y
|
||||
Bz = other.z
|
||||
self.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||||
self.x = + Ax * Bw + Aw * Bx + P * (Ay * Bz - Az * By)
|
||||
self.y = + Ay * Bw + Aw * By + P * (Az * Bx - Ax * Bz)
|
||||
self.z = + Az * Bw + Aw * Bz + P * (Ax * By - Ay * Bx)
|
||||
self.q = self.q*other.q - np.dot(self.p,other.p)
|
||||
self.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
||||
except: pass
|
||||
return self
|
||||
|
||||
def __div__(self, other):
|
||||
"""Division"""
|
||||
if isinstance(other, (int,float)):
|
||||
w = self.w / other
|
||||
x = self.x / other
|
||||
y = self.y / other
|
||||
z = self.z / other
|
||||
return self.__class__([w,x,y,z])
|
||||
q = self.q / other
|
||||
p = self.p / other
|
||||
return self.__class__(q=q,p=p)
|
||||
else:
|
||||
return NotImplemented
|
||||
|
||||
def __idiv__(self, other):
|
||||
"""In-place division"""
|
||||
if isinstance(other, (int,float)):
|
||||
self.w /= other
|
||||
self.x /= other
|
||||
self.y /= other
|
||||
self.z /= other
|
||||
self.q /= other
|
||||
self.p /= other
|
||||
return self
|
||||
|
||||
def __add__(self, other):
|
||||
"""Addition"""
|
||||
if isinstance(other, Quaternion):
|
||||
w = self.w + other.w
|
||||
x = self.x + other.x
|
||||
y = self.y + other.y
|
||||
z = self.z + other.z
|
||||
return self.__class__([w,x,y,z])
|
||||
q = self.q + other.q
|
||||
p = self.p + other.p
|
||||
return self.__class__(q=q,p=p)
|
||||
else:
|
||||
return NotImplemented
|
||||
|
||||
def __iadd__(self, other):
|
||||
"""In-place addition"""
|
||||
if isinstance(other, Quaternion):
|
||||
self.w += other.w
|
||||
self.x += other.x
|
||||
self.y += other.y
|
||||
self.z += other.z
|
||||
self.q += other.q
|
||||
self.p += other.p
|
||||
return self
|
||||
|
||||
def __sub__(self, other):
|
||||
"""Subtraction"""
|
||||
if isinstance(other, Quaternion):
|
||||
Q = self.copy()
|
||||
Q.w -= other.w
|
||||
Q.x -= other.x
|
||||
Q.y -= other.y
|
||||
Q.z -= other.z
|
||||
Q.q -= other.q
|
||||
Q.p -= other.p
|
||||
return Q
|
||||
else:
|
||||
return self.copy()
|
||||
|
@ -215,40 +164,25 @@ class Quaternion:
|
|||
def __isub__(self, other):
|
||||
"""In-place subtraction"""
|
||||
if isinstance(other, Quaternion):
|
||||
self.w -= other.w
|
||||
self.x -= other.x
|
||||
self.y -= other.y
|
||||
self.z -= other.z
|
||||
self.q -= other.q
|
||||
self.p -= other.p
|
||||
return self
|
||||
|
||||
def __neg__(self):
|
||||
"""Additive inverse"""
|
||||
self.w = -self.w
|
||||
self.x = -self.x
|
||||
self.y = -self.y
|
||||
self.z = -self.z
|
||||
self.q = -self.q
|
||||
self.p = -self.p
|
||||
return self
|
||||
|
||||
def __abs__(self):
|
||||
"""Norm"""
|
||||
return math.sqrt(self.w ** 2 + \
|
||||
self.x ** 2 + \
|
||||
self.y ** 2 + \
|
||||
self.z ** 2)
|
||||
return math.sqrt(self.q ** 2 + np.dot(self.p,self.p))
|
||||
|
||||
magnitude = __abs__
|
||||
|
||||
def __eq__(self,other):
|
||||
"""Equal at e-8 precision"""
|
||||
return (abs(self.w-other.w) < 1e-8 and \
|
||||
abs(self.x-other.x) < 1e-8 and \
|
||||
abs(self.y-other.y) < 1e-8 and \
|
||||
abs(self.z-other.z) < 1e-8) \
|
||||
or \
|
||||
(abs(-self.w-other.w) < 1e-8 and \
|
||||
abs(-self.x-other.x) < 1e-8 and \
|
||||
abs(-self.y-other.y) < 1e-8 and \
|
||||
abs(-self.z-other.z) < 1e-8)
|
||||
return (self-other).magnitude() < 1e-8 or (-self-other).magnitude() < 1e-8
|
||||
|
||||
def __ne__(self,other):
|
||||
"""Not equal at e-8 precision"""
|
||||
|
@ -259,16 +193,11 @@ class Quaternion:
|
|||
return (self.Rodrigues()>other.Rodrigues()) - (self.Rodrigues()<other.Rodrigues())
|
||||
|
||||
def magnitude_squared(self):
|
||||
return self.w ** 2 + \
|
||||
self.x ** 2 + \
|
||||
self.y ** 2 + \
|
||||
self.z ** 2
|
||||
return self.q ** 2 + np.dot(self.p,self.p)
|
||||
|
||||
def identity(self):
|
||||
self.w = 1.
|
||||
self.x = 0.
|
||||
self.y = 0.
|
||||
self.z = 0.
|
||||
self.q = 1.
|
||||
self.p = np.zeros(3,dtype=float)
|
||||
return self
|
||||
|
||||
def normalize(self):
|
||||
|
@ -278,9 +207,7 @@ class Quaternion:
|
|||
return self
|
||||
|
||||
def conjugate(self):
|
||||
self.x = -self.x
|
||||
self.y = -self.y
|
||||
self.z = -self.z
|
||||
self.p = -self.p
|
||||
return self
|
||||
|
||||
def inverse(self):
|
||||
|
@ -291,11 +218,9 @@ class Quaternion:
|
|||
return self
|
||||
|
||||
def homomorph(self):
|
||||
if self.w < 0.0:
|
||||
self.w = -self.w
|
||||
self.x = -self.x
|
||||
self.y = -self.y
|
||||
self.z = -self.z
|
||||
if self.q < 0.0:
|
||||
self.q = -self.q
|
||||
self.p = -self.p
|
||||
return self
|
||||
|
||||
def normalized(self):
|
||||
|
@ -311,29 +236,35 @@ class Quaternion:
|
|||
return self.copy().homomorph()
|
||||
|
||||
def asList(self):
|
||||
return [i for i in self]
|
||||
return [self.q]+list(self.p)
|
||||
|
||||
def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.)
|
||||
return np.outer([i for i in self],[i for i in self])
|
||||
return np.outer(self.asList(),self.asList())
|
||||
|
||||
def asMatrix(self):
|
||||
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||
P = -1.0
|
||||
qbarhalf = 0.5*(self.w**2 - self.x**2 - self.y**2 - self.z**2)
|
||||
qbarhalf = 0.5*(self.q**2 - np.dot(self.p,self.p))
|
||||
return 2.0*np.array(
|
||||
[[ qbarhalf + self.x**2 , self.x*self.y -P* self.w*self.z, self.x*self.z +P* self.w*self.y],
|
||||
[ self.x*self.y +P* self.w*self.z, qbarhalf + self.y**2 , self.y*self.z -P* self.w*self.x],
|
||||
[ self.x*self.z -P* self.w*self.y, self.y*self.z +P* self.w*self.x, qbarhalf + self.z**2 ],
|
||||
[[ qbarhalf + self.p[0]**2 ,
|
||||
self.p[0]*self.p[1] -P* self.q*self.p[2],
|
||||
self.p[0]*self.p[2] +P* self.q*self.p[1] ],
|
||||
[ self.p[0]*self.p[1] +P* self.q*self.p[2],
|
||||
qbarhalf + self.p[1]**2 ,
|
||||
self.p[1]*self.p[2] -P* self.q*self.p[0] ],
|
||||
[ self.p[0]*self.p[2] -P* self.q*self.p[1],
|
||||
self.p[1]*self.p[2] +P* self.q*self.p[0],
|
||||
qbarhalf + self.p[2]**2 ],
|
||||
])
|
||||
|
||||
def asAngleAxis(self,
|
||||
degrees = False):
|
||||
if self.w > 1:
|
||||
if self.q > 1.:
|
||||
self.normalize()
|
||||
|
||||
s = math.sqrt(1. - self.w**2)
|
||||
x = 2*self.w**2 - 1.
|
||||
y = 2*self.w * s
|
||||
s = math.sqrt(1. - self.q**2)
|
||||
x = 2*self.q**2 - 1.
|
||||
y = 2*self.q * s
|
||||
|
||||
angle = math.atan2(y,x)
|
||||
if angle < 0.0:
|
||||
|
@ -341,28 +272,28 @@ class Quaternion:
|
|||
s *= -1.
|
||||
|
||||
return (np.degrees(angle) if degrees else angle,
|
||||
np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-6 else [self.x / s, self.y / s, self.z / s]))
|
||||
np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-6 else self.p / s))
|
||||
|
||||
def asRodrigues(self):
|
||||
return np.inf*np.ones(3) if self.w == 0.0 else np.array([self.x, self.y, self.z])/self.w
|
||||
return np.inf*np.ones(3) if self.q == 0.0 else self.p/self.q
|
||||
|
||||
def asEulers(self,
|
||||
degrees = False):
|
||||
"""Orientation as Bunge-Euler angles."""
|
||||
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||
P = -1.0
|
||||
q03 = self.w**2 + self.z**2
|
||||
q12 = self.x**2 + self.y**2
|
||||
q03 = self.q**2 + self.p[2]**2
|
||||
q12 = self.p[0]**2 + self.p[1]**2
|
||||
chi = np.sqrt(q03*q12)
|
||||
|
||||
if abs(chi) < 1e-10 and abs(q12) < 1e-10:
|
||||
eulers = np.array([math.atan2(-2*P*self.w*self.z,self.w**2-self.z**2),0,0])
|
||||
eulers = np.array([math.atan2(-2*P*self.q*self.p[2],self.q**2-self.p[2]**2),0,0])
|
||||
elif abs(chi) < 1e-10 and abs(q03) < 1e-10:
|
||||
eulers = np.array([math.atan2( 2 *self.x*self.y,self.x**2-self.y**2),np.pi,0])
|
||||
eulers = np.array([math.atan2( 2 *self.p[0]*self.p[1],self.p[0]**2-self.p[1]**2),np.pi,0])
|
||||
else:
|
||||
eulers = np.array([math.atan2((self.x*self.z-P*self.w*self.y)/chi,(-P*self.w*self.x-self.y*self.z)/chi),
|
||||
eulers = np.array([math.atan2((self.p[0]*self.p[2]-P*self.q*self.p[1])/chi,(-P*self.q*self.p[0]-self.p[1]*self.p[2])/chi),
|
||||
math.atan2(2*chi,q03-q12),
|
||||
math.atan2((P*self.w*self.y+self.x*self.z)/chi,( self.y*self.z-P*self.w*self.x)/chi),
|
||||
math.atan2((P*self.q*self.p[1]+self.p[0]*self.p[2])/chi,( self.p[1]*self.p[2]-P*self.q*self.p[0])/chi),
|
||||
])
|
||||
|
||||
return np.degrees(eulers) if degrees else eulers
|
||||
|
@ -385,7 +316,7 @@ class Quaternion:
|
|||
x = math.sin(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
||||
y = math.cos(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
||||
z = math.sin(2.0*math.pi*r[0])*math.sqrt(r[2])
|
||||
return cls([w,x,y,z])
|
||||
return cls(quat=[w,x,y,z])
|
||||
|
||||
|
||||
@classmethod
|
||||
|
@ -393,9 +324,7 @@ class Quaternion:
|
|||
if not isinstance(rodrigues, np.ndarray): rodrigues = np.array(rodrigues)
|
||||
halfangle = math.atan(np.linalg.norm(rodrigues))
|
||||
c = math.cos(halfangle)
|
||||
w = c
|
||||
x,y,z = rodrigues/c
|
||||
return cls([w,x,y,z])
|
||||
return cls(q=c,p=rodrigues/c)
|
||||
|
||||
|
||||
@classmethod
|
||||
|
@ -403,22 +332,19 @@ class Quaternion:
|
|||
angle,
|
||||
axis,
|
||||
degrees = False):
|
||||
if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype='d')
|
||||
if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype=float)
|
||||
axis = axis.astype(float)/np.linalg.norm(axis)
|
||||
angle = np.radians(angle) if degrees else angle
|
||||
s = math.sin(0.5 * angle)
|
||||
w = math.cos(0.5 * angle)
|
||||
x = axis[0] * s
|
||||
y = axis[1] * s
|
||||
z = axis[2] * s
|
||||
return cls([w,x,y,z])
|
||||
c = math.cos(0.5 * angle)
|
||||
return cls(q=c,p=axis*s)
|
||||
|
||||
|
||||
@classmethod
|
||||
def fromEulers(cls,
|
||||
eulers,
|
||||
degrees = False):
|
||||
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype='d')
|
||||
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype=float)
|
||||
eulers = np.radians(eulers) if degrees else eulers
|
||||
|
||||
sigma = 0.5*(eulers[0]+eulers[2])
|
||||
|
@ -432,7 +358,7 @@ class Quaternion:
|
|||
x = -P * s * np.cos(delta)
|
||||
y = -P * s * np.sin(delta)
|
||||
z = -P * c * np.sin(sigma)
|
||||
return cls([w,x,y,z])
|
||||
return cls(quat=[w,x,y,z])
|
||||
|
||||
|
||||
# Modified Method to calculate Quaternion from Orientation Matrix,
|
||||
|
@ -454,7 +380,7 @@ class Quaternion:
|
|||
y *= -1 if m[0,2] < m[2,0] else 1
|
||||
z *= -1 if m[1,0] < m[0,1] else 1
|
||||
|
||||
return cls(np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
||||
return cls(quat=np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
||||
|
||||
|
||||
@classmethod
|
||||
|
@ -468,36 +394,30 @@ class Quaternion:
|
|||
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
||||
Q = cls()
|
||||
|
||||
costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
|
||||
costheta = q1.q*q2.q + np.dot(q1.p,q2.p)
|
||||
if costheta < 0.:
|
||||
costheta = -costheta
|
||||
q1 = q1.conjugated()
|
||||
elif costheta > 1:
|
||||
costheta = 1
|
||||
elif costheta > 1.:
|
||||
costheta = 1.
|
||||
|
||||
theta = math.acos(costheta)
|
||||
if abs(theta) < 0.01:
|
||||
Q.w = q2.w
|
||||
Q.x = q2.x
|
||||
Q.y = q2.y
|
||||
Q.z = q2.z
|
||||
Q.q = q2.q
|
||||
Q.p = q2.p
|
||||
return Q
|
||||
|
||||
sintheta = math.sqrt(1.0 - costheta * costheta)
|
||||
if abs(sintheta) < 0.01:
|
||||
Q.w = (q1.w + q2.w) * 0.5
|
||||
Q.x = (q1.x + q2.x) * 0.5
|
||||
Q.y = (q1.y + q2.y) * 0.5
|
||||
Q.z = (q1.z + q2.z) * 0.5
|
||||
Q.q = (q1.q + q2.q) * 0.5
|
||||
Q.p = (q1.p + q2.p) * 0.5
|
||||
return Q
|
||||
|
||||
ratio1 = math.sin((1 - t) * theta) / sintheta
|
||||
ratio2 = math.sin(t * theta) / sintheta
|
||||
ratio1 = math.sin((1.0 - t) * theta) / sintheta
|
||||
ratio2 = math.sin( t * theta) / sintheta
|
||||
|
||||
Q.w = q1.w * ratio1 + q2.w * ratio2
|
||||
Q.x = q1.x * ratio1 + q2.x * ratio2
|
||||
Q.y = q1.y * ratio1 + q2.y * ratio2
|
||||
Q.z = q1.z * ratio1 + q2.z * ratio2
|
||||
Q.q = q1.q * ratio1 + q2.q * ratio2
|
||||
Q.p = q1.p * ratio1 + q2.p * ratio2
|
||||
return Q
|
||||
|
||||
|
||||
|
@ -523,7 +443,7 @@ class Symmetry:
|
|||
|
||||
def __repr__(self):
|
||||
"""Readbable string"""
|
||||
return '%s' % (self.lattice)
|
||||
return '{}'.format(self.lattice)
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
|
@ -536,7 +456,7 @@ class Symmetry:
|
|||
|
||||
def __cmp__(self,other):
|
||||
"""Linear ordering"""
|
||||
myOrder = Symmetry.lattices.index(self.lattice)
|
||||
myOrder = Symmetry.lattices.index(self.lattice)
|
||||
otherOrder = Symmetry.lattices.index(other.lattice)
|
||||
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
||||
|
||||
|
@ -732,7 +652,7 @@ class Symmetry:
|
|||
else:
|
||||
return True
|
||||
|
||||
v = np.array(vector,dtype = float)
|
||||
v = np.array(vector,dtype=float)
|
||||
if proper: # check both improper ...
|
||||
theComponents = np.dot(basis['improper'],v)
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
|
@ -747,10 +667,10 @@ class Symmetry:
|
|||
if color: # have to return color array
|
||||
if inSST:
|
||||
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
||||
rgb = np.minimum(np.ones(3,'d'),rgb) # limit to maximum intensity
|
||||
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
||||
rgb /= max(rgb) # normalize to (HS)V = 1
|
||||
else:
|
||||
rgb = np.zeros(3,'d')
|
||||
rgb = np.zeros(3,dtype=float)
|
||||
return (inSST,rgb)
|
||||
else:
|
||||
return inSST
|
||||
|
@ -790,8 +710,9 @@ class Orientation:
|
|||
self.quaternion = Quaternion.fromRodrigues(Rodrigues)
|
||||
elif isinstance(quaternion, Quaternion): # based on given quaternion
|
||||
self.quaternion = quaternion.homomorphed()
|
||||
elif isinstance(quaternion, np.ndarray) and quaternion.shape == (4,): # based on given quaternion-like array
|
||||
self.quaternion = Quaternion(quaternion).homomorphed()
|
||||
elif (isinstance(quaternion, np.ndarray) and quaternion.shape == (4,)) or \
|
||||
(isinstance(quaternion, list) and len(quaternion) == 4 ): # based on given quaternion-like array
|
||||
self.quaternion = Quaternion(quat=quaternion).homomorphed()
|
||||
|
||||
self.symmetry = Symmetry(symmetry)
|
||||
|
||||
|
@ -804,10 +725,12 @@ class Orientation:
|
|||
|
||||
def __repr__(self):
|
||||
"""Value as all implemented representations"""
|
||||
return 'Symmetry: %s\n' % (self.symmetry) + \
|
||||
'Quaternion: %s\n' % (self.quaternion) + \
|
||||
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
|
||||
'Bunge Eulers / deg: %s' % ('\t'.join(map(str,self.asEulers(degrees=True))) )
|
||||
return '\n'.join([
|
||||
'Symmetry: {}'.format(self.symmetry),
|
||||
'Quaternion: {}'.format(self.quaternion),
|
||||
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
|
||||
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
|
||||
])
|
||||
|
||||
def asQuaternion(self):
|
||||
return self.quaternion.asList()
|
||||
|
|
Loading…
Reference in New Issue