more stable/robust conversions

This commit is contained in:
Martin Diehl 2019-04-17 12:51:00 +02:00
parent 079e683dd1
commit a6e6db0559
2 changed files with 13 additions and 35 deletions

View File

@ -1077,11 +1077,11 @@ def qu2ax(qu):
Modified version of the original formulation, should be numerically more stable
"""
if isone(abs(qu[0])): # set axis to [001] if the angle is 0/360
if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360
ax = [ 0.0, 0.0, 1.0, 0.0 ]
elif not iszero(qu[0]):
omega = 2.0 * np.arccos(qu[0])
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
else:
ax = [ qu[1], qu[2], qu[3], np.pi]
@ -1126,9 +1126,9 @@ def om2qu(om):
"""
Orientation matrix to quaternion
The original formulation (direct conversion) had numerical issues
The original formulation (direct conversion) had (numerical?) issues
"""
return ax2qu(om2ax(om))
return eu2qu(om2eu(om))
def om2eu(om):

View File

@ -306,12 +306,11 @@ pure function qu2ax(qu) result(ax)
real(pReal) :: omega, s
omega = 2.0 * acos(math_clip(qu%w,-1.0_pReal,1.0_pReal))
! if the angle equals zero, then we return the rotation axis as [001]
if (dEq0(omega)) then
ax = [ 0.0, 0.0, 1.0, 0.0 ]
if (dEq0(qu%x**2+qu%y**2+qu%z**2)) then
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] ! axis = [001]
elseif (dNeq0(qu%w)) then
s = sign(1.0_pReal,qu%w)/sqrt(qu%x**2+qu%y**2+qu%z**2)
omega = 2.0_pReal * acos(math_clip(qu%w,-1.0_pReal,1.0_pReal))
ax = [ qu%x*s, qu%y*s, qu%z*s, omega ]
else
ax = [ qu%x, qu%y, qu%z, PI ]
@ -397,37 +396,16 @@ end function qu2cu
!---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief convert rotation matrix to a unit quaternion
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief convert rotation matrix to cubochoric
!> @details the original formulation (direct conversion) had (numerical?) issues
!---------------------------------------------------------------------------------------------------
function om2qu(om) result(qu)
use prec, only: &
dEq
real(pReal), intent(in), dimension(3,3) :: om
type(quaternion) :: qu
real(pReal), intent(in), dimension(3,3) :: om
type(quaternion) :: qu
real(pReal), dimension(4) :: qu_A
real(pReal), dimension(4) :: s
s = [+om(1,1) +om(2,2) +om(3,3) +1.0_pReal, &
+om(1,1) -om(2,2) -om(3,3) +1.0_pReal, &
-om(1,1) +om(2,2) -om(3,3) +1.0_pReal, &
-om(1,1) -om(2,2) +om(3,3) +1.0_pReal]
qu_A = sqrt(max(s,0.0_pReal))*0.5_pReal*[1.0_pReal,P,P,P]
qu_A = qu_A/norm2(qu_A)
if(any(dEq(abs(qu_A),1.0_pReal,1.0e-15_pReal))) &
where (.not.(dEq(abs(qu_A),1.0_pReal,1.0e-15_pReal))) qu_A = 0.0_pReal
if (om(3,2) < om(2,3)) qu_A(2) = -qu_A(2)
if (om(1,3) < om(3,1)) qu_A(3) = -qu_A(3)
if (om(2,1) < om(1,2)) qu_A(4) = -qu_A(4)
qu = quaternion(qu_A)
!qu_A = om2ax(om)
!if(any(qu_A(1:3) * [qu%x,qu%y,qu%z] < 0.0)) print*, 'sign error'
qu = eu2qu(om2eu(om))
end function om2qu