do operations vectorized
This commit is contained in:
parent
462bb07efd
commit
a6c69a744b
|
@ -184,9 +184,15 @@ class DADF5():
|
|||
|
||||
|
||||
def add_Cauchy(self,P='P',F='F'):
|
||||
"""Adds Cauchy stress calculated from 1st Piola-Kirchhoff stress and deformation gradient"""
|
||||
"""
|
||||
Adds Cauchy stress calculated from 1st Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Todo
|
||||
----
|
||||
The einsum formula is completely untested!
|
||||
"""
|
||||
def Cauchy(F,P):
|
||||
return 1.0/np.linalg.det(F)*np.dot(P,F.T)
|
||||
return np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F),F,P)
|
||||
|
||||
args = [{'label':F,'shape':[3,3],'unit':'-'},
|
||||
{'label':P,'shape':[3,3],'unit':'Pa'} ]
|
||||
|
@ -194,7 +200,7 @@ class DADF5():
|
|||
'unit':'Pa',
|
||||
'Description': 'Cauchy stress calculated from 1st Piola-Kirchhoff stress and deformation gradient'}
|
||||
|
||||
self.add_generic_pointwise(Cauchy,args,result)
|
||||
self.add_generic_pointwise_vectorized(Cauchy,args,result)
|
||||
|
||||
|
||||
def add_Mises_stress(self,stress='sigma'):
|
||||
|
@ -220,7 +226,7 @@ class DADF5():
|
|||
'unit':'n/a',
|
||||
'Description': 'Norm of vector or tensor or magnitude of a scalar. See numpy.linalg.norm manual for details'}
|
||||
|
||||
self.add_generic_pointwise(np.linalg.norm,args,result)
|
||||
self.add_generic_pointwise_vectorized(np.linalg.norm,args,result)
|
||||
|
||||
|
||||
def add_determinant(self,a):
|
||||
|
@ -231,7 +237,7 @@ class DADF5():
|
|||
'unit':'n/a',
|
||||
'Description': 'Determinant of a tensor'}
|
||||
|
||||
self.add_generic_pointwise(np.linalg.det,args,result)
|
||||
self.add_generic_pointwise_vectorized(np.linalg.det,args,result)
|
||||
|
||||
|
||||
def add_spherical(self,a):
|
||||
|
@ -307,9 +313,10 @@ class DADF5():
|
|||
|
||||
def add_generic_pointwise(self,func,args,result):
|
||||
"""
|
||||
Ggeneral function to add pointwise data
|
||||
Ggeneral function to add pointwise data.
|
||||
|
||||
function 'func' first needs to have data arguments before other arguments
|
||||
Works for functions that are pointwise defined.
|
||||
"""
|
||||
groups = self.get_fitting(args)
|
||||
|
||||
|
@ -317,9 +324,6 @@ class DADF5():
|
|||
out = args['out']
|
||||
datasets_in = args['dat']
|
||||
func = args['fun']
|
||||
# calling the function per point might be performance-wise not optimal
|
||||
# could be worth to investigate the performance for vectorized add_XXX functions that do the
|
||||
# loops internally
|
||||
for i in range(out.shape[0]):
|
||||
arg = tuple([d[i,] for d in datasets_in])
|
||||
out[i,] = func(*arg)
|
||||
|
@ -347,7 +351,7 @@ class DADF5():
|
|||
# Add the jobs in bulk to the thread pool. Alternatively you could use
|
||||
# `pool.add_task` to add single jobs. The code will block here, which
|
||||
# makes it possible to cancel the thread pool with an exception when
|
||||
# the currently running batch of workers is finishnumpy.linalg.normed.
|
||||
# the currently running batch of workers is finished
|
||||
|
||||
pool.map(job, todo[:Nthreads+1])
|
||||
i = 0
|
||||
|
@ -367,6 +371,67 @@ class DADF5():
|
|||
i+=1
|
||||
|
||||
pool.wait_completion()
|
||||
|
||||
|
||||
|
||||
def add_generic_pointwise_vectorized(self,func,args,result):
|
||||
"""
|
||||
Ggeneral function to add pointwise data
|
||||
|
||||
function 'func' first needs to have data arguments before other arguments
|
||||
Works for vectorized functions.
|
||||
"""
|
||||
groups = self.get_fitting(args)
|
||||
|
||||
def job(args):
|
||||
out = args['out']
|
||||
datasets_in = args['dat']
|
||||
func = args['fun']
|
||||
out = func(*datasets_in)
|
||||
args['results'].put({'out':out,'group':args['group']})
|
||||
|
||||
Nthreads = 4 # ToDo: should be a parameter
|
||||
results = Queue(Nthreads+1)
|
||||
|
||||
todo = []
|
||||
|
||||
for g in groups:
|
||||
with h5py.File(self.filename,'r') as f:
|
||||
datasets_in = [f[g+'/'+u['label']][()] for u in args]
|
||||
|
||||
|
||||
# figure out dimension of results
|
||||
for d in datasets_in:
|
||||
print('input shape',d.shape)
|
||||
testArg = tuple([d[0:1,] for d in datasets_in]) # to call function with first point
|
||||
#print('testArg',testArg)
|
||||
out = np.empty([datasets_in[0].shape[0]] + list(func(*testArg).shape[1:])) # shape is Npoints x shape of the results for one point
|
||||
print('estimated output shape',out.shape)
|
||||
todo.append({'dat':datasets_in,'fun':func,'out':out,'group':g,'results':results})
|
||||
|
||||
# Instantiate a thread pool with worker threads
|
||||
pool = util.ThreadPool(Nthreads)
|
||||
missingResults = len(todo)
|
||||
|
||||
|
||||
# Add the jobs in bulk to the thread pool. Alternatively you could use
|
||||
# `pool.add_task` to add single jobs. The code will block here, which
|
||||
# makes it possible to cancel the thread pool with an exception when
|
||||
# the currently running batch of workers is finished
|
||||
|
||||
pool.map(job, todo[:Nthreads+1])
|
||||
i = 0
|
||||
while missingResults > 0:
|
||||
r=results.get() # noqa
|
||||
print(r['group'])
|
||||
with h5py.File(self.filename,'r+') as f:
|
||||
dataset_out = f[r['group']].create_dataset(result['label'],data=r['out'])
|
||||
dataset_out.attrs['Unit'] = result['unit']
|
||||
dataset_out.attrs['Description'] = result['Description']
|
||||
dataset_out.attrs['Creator'] = 'dadf5.py v{}'.format('n/a')
|
||||
missingResults-=1
|
||||
try:
|
||||
pool.add_task(job,todo[Nthreads+1+i])
|
||||
except:
|
||||
pass
|
||||
i+=1
|
||||
|
||||
pool.wait_completion()
|
||||
|
|
Loading…
Reference in New Issue