Use scipy euclidean distance function instead of FMM (runs without skfmm
module installed)
This commit is contained in:
parent
64d167fa90
commit
a69aaa1315
|
@ -1,6 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
|
|
||||||
import os,re,sys,math,numpy,skfmm,string,damask
|
import os,re,sys,math,numpy,string,damask
|
||||||
from scipy import ndimage
|
from scipy import ndimage
|
||||||
from optparse import OptionParser, Option
|
from optparse import OptionParser, Option
|
||||||
|
|
||||||
|
@ -202,7 +202,7 @@ for file in files:
|
||||||
distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
||||||
|
|
||||||
for i in xrange(len(feature_list)):
|
for i in xrange(len(feature_list)):
|
||||||
distance[i,:,:,:] = skfmm.distance(distance[i,:,:,:], dx=[unitlength]*3)
|
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3
|
||||||
distance.shape = (len(feature_list),resolution.prod())
|
distance.shape = (len(feature_list),resolution.prod())
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
|
Loading…
Reference in New Issue