polishing
This commit is contained in:
parent
b31de5d0f6
commit
a665d5726d
|
@ -327,7 +327,7 @@ class DADF5():
|
||||||
"""
|
"""
|
||||||
Dataset for all points/cells.
|
Dataset for all points/cells.
|
||||||
|
|
||||||
If more than one path is given, the dataset is composed of the individual contributions
|
If more than one path is given, the dataset is composed of the individual contributions.
|
||||||
"""
|
"""
|
||||||
with h5py.File(self.filename,'r') as f:
|
with h5py.File(self.filename,'r') as f:
|
||||||
shape = (self.Nmaterialpoints,) + np.shape(f[path[0]])[1:]
|
shape = (self.Nmaterialpoints,) + np.shape(f[path[0]])[1:]
|
||||||
|
@ -383,6 +383,7 @@ class DADF5():
|
||||||
Label of the dataset containing the 1. Piola-Kirchhoff stress. Default value is ‘P’.
|
Label of the dataset containing the 1. Piola-Kirchhoff stress. Default value is ‘P’.
|
||||||
F : str, optional
|
F : str, optional
|
||||||
Label of the dataset containing the deformation gradient. Default value is ‘F’.
|
Label of the dataset containing the deformation gradient. Default value is ‘F’.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_Cauchy(F,P):
|
def __add_Cauchy(F,P):
|
||||||
|
|
||||||
|
@ -410,10 +411,12 @@ class DADF5():
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a symmetric stress or strain tensor
|
Label of the dataset containing a symmetric stress or strain tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_Mises(x):
|
def __add_Mises(x):
|
||||||
|
|
||||||
|
t = 'strain' if x['Unit'] == '1' else 'stress'
|
||||||
return {
|
return {
|
||||||
'data': mechanics.Mises_strain(x) if t=='strain' else mechanics.Mises_stress(x),
|
'data': mechanics.Mises_strain(x) if t=='strain' else mechanics.Mises_stress(x),
|
||||||
'label': '{}_vM'.format(x['label']),
|
'label': '{}_vM'.format(x['label']),
|
||||||
|
@ -439,6 +442,7 @@ class DADF5():
|
||||||
Label of the dataset containing a vector or tensor.
|
Label of the dataset containing a vector or tensor.
|
||||||
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
||||||
Order of the norm. inf means numpy’s inf object. For details refer to numpy.linalg.norm.
|
Order of the norm. inf means numpy’s inf object. For details refer to numpy.linalg.norm.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_norm(x,ord):
|
def __add_norm(x,ord):
|
||||||
|
|
||||||
|
@ -477,6 +481,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a scalar, vector, or tensor.
|
Label of the dataset containing a scalar, vector, or tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_absolute(x):
|
def __add_absolute(x):
|
||||||
|
|
||||||
|
@ -503,6 +508,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a tensor.
|
Label of the dataset containing a tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_determinant(x):
|
def __add_determinant(x):
|
||||||
|
|
||||||
|
@ -529,6 +535,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a tensor.
|
Label of the dataset containing a tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_spherical(x):
|
def __add_spherical(x):
|
||||||
|
|
||||||
|
@ -558,6 +565,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a tensor.
|
Label of the dataset containing a tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_deviator(x):
|
def __add_deviator(x):
|
||||||
|
|
||||||
|
@ -594,7 +602,8 @@ class DADF5():
|
||||||
description : str, optional
|
description : str, optional
|
||||||
Human readable description of the result.
|
Human readable description of the result.
|
||||||
vectorized : bool, optional
|
vectorized : bool, optional
|
||||||
Indicate whether the formula is written in vectorized form.
|
Indicate whether the formula is written in vectorized form. Default is ‘True’.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if vectorized is not True:
|
if vectorized is not True:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
@ -636,6 +645,7 @@ class DADF5():
|
||||||
Defaults value is ‘U’.
|
Defaults value is ‘U’.
|
||||||
ord : float, optional
|
ord : float, optional
|
||||||
Order of the strain calculation. Default value is ‘0.0’.
|
Order of the strain calculation. Default value is ‘0.0’.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_strain_tensor(F,t,ord):
|
def __add_strain_tensor(F,t,ord):
|
||||||
|
|
||||||
|
@ -664,6 +674,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a symmetric tensor.
|
Label of the dataset containing a symmetric tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_principal_components(x):
|
def __add_principal_components(x):
|
||||||
|
|
||||||
|
@ -690,6 +701,7 @@ class DADF5():
|
||||||
----------
|
----------
|
||||||
x : str
|
x : str
|
||||||
Label of the dataset containing a symmetric tensor.
|
Label of the dataset containing a symmetric tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __add_maximum_shear(x):
|
def __add_maximum_shear(x):
|
||||||
|
|
||||||
|
@ -720,6 +732,7 @@ class DADF5():
|
||||||
Details of the datasets to be used: label (in HDF5 file) and arg (argument to which the data is parsed in func).
|
Details of the datasets to be used: label (in HDF5 file) and arg (argument to which the data is parsed in func).
|
||||||
extra_args : dictionary, optional
|
extra_args : dictionary, optional
|
||||||
Any extra arguments parsed to func.
|
Any extra arguments parsed to func.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def job(args):
|
def job(args):
|
||||||
"""Call function with input data + extra arguments, returns results + group."""
|
"""Call function with input data + extra arguments, returns results + group."""
|
||||||
|
|
|
@ -12,6 +12,7 @@ def Cauchy(F,P):
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
P : numpy.array of shape (x,3,3) or (3,3)
|
P : numpy.array of shape (x,3,3) or (3,3)
|
||||||
1. Piola-Kirchhoff stress.
|
1. Piola-Kirchhoff stress.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if np.shape(F) == np.shape(P) == (3,3):
|
if np.shape(F) == np.shape(P) == (3,3):
|
||||||
sigma = 1.0/np.linalg.det(F) * np.dot(F,P)
|
sigma = 1.0/np.linalg.det(F) * np.dot(F,P)
|
||||||
|
@ -34,23 +35,22 @@ def strain_tensor(F,t,ord):
|
||||||
t : {‘V’, ‘U’}
|
t : {‘V’, ‘U’}
|
||||||
Type of the polar decomposition, ‘V’ for right stretch tensor and ‘U’ for left stretch tensor.
|
Type of the polar decomposition, ‘V’ for right stretch tensor and ‘U’ for left stretch tensor.
|
||||||
ord : float
|
ord : float
|
||||||
Order of the strain
|
Order of the strain.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
F_expanded = F if len(F.shape) == 3 else F.reshape(1,3,3)
|
|
||||||
|
|
||||||
if t == 'U':
|
if t == 'U':
|
||||||
B = np.matmul(F_expanded,transpose(F_expanded))
|
B = np.matmul(F,transpose(F))
|
||||||
U,n = np.linalg.eigh(symmetric(B))
|
U,n = np.linalg.eigh(B)
|
||||||
l = np.log(U) if ord == 0 else U**ord - np.broadcast_to(np.ones(3),[U.shape[0],3])
|
lmd = np.log(U) if ord == 0 else \
|
||||||
|
U**ord - (np.broadcast_to(np.ones(3),[U.shape[0],3]) if len(F.shape) == 3 else np.ones(3))
|
||||||
elif t == 'V':
|
elif t == 'V':
|
||||||
C = np.matmul(transpose(F_expanded),F_expanded)
|
C = np.matmul(transpose(F),F)
|
||||||
V,n = np.linalg.eigh(symmetric(C))
|
V,n = np.linalg.eigh(C)
|
||||||
l = np.log(V) if ord == 0 else np.broadcast_to(np.ones(3),[V.shape[0],3]) - 1.0/V**ord
|
lmd = np.log(V) if ord == 0 else \
|
||||||
|
- 1.0/V**ord + (np.broadcast_to(np.ones(3),[V.shape[0],3]) if len(F.shape) == 3 else np.ones(3))
|
||||||
|
|
||||||
epsilon = np.matmul(n,np.einsum('ij,ikj->ijk',l,n))
|
return np.dot(n,np.dot(np.diag(l),n.T)) if np.shape(F) == (3,3) else \
|
||||||
|
np.matmul(n,np.einsum('ij,ikj->ijk',lmd,n))
|
||||||
return epsilon.reshape((3,3)) if np.shape(F) == (3,3) else \
|
|
||||||
epsilon
|
|
||||||
|
|
||||||
|
|
||||||
def deviatoric_part(x):
|
def deviatoric_part(x):
|
||||||
|
@ -60,7 +60,8 @@ def deviatoric_part(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Tensor.
|
Tensor of which the deviatoric part is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||||
|
@ -76,9 +77,9 @@ def spherical_part(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Tensor.
|
Tensor of which the hydrostatic part is computed.
|
||||||
"""
|
|
||||||
|
|
||||||
|
"""
|
||||||
return np.trace(x)/3.0 if np.shape(x) == (3,3) else \
|
return np.trace(x)/3.0 if np.shape(x) == (3,3) else \
|
||||||
np.trace(x,axis1=1,axis2=2)/3.0
|
np.trace(x,axis1=1,axis2=2)/3.0
|
||||||
|
|
||||||
|
@ -90,7 +91,8 @@ def Mises_stress(sigma):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
sigma : numpy.array of shape (x,3,3) or (3,3)
|
sigma : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Symmetric stress tensor.
|
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
s = deviatoric_part(sigma)
|
s = deviatoric_part(sigma)
|
||||||
return np.sqrt(3.0/2.0*np.trace(s)) if np.shape(sigma) == (3,3) else \
|
return np.sqrt(3.0/2.0*np.trace(s)) if np.shape(sigma) == (3,3) else \
|
||||||
|
@ -104,7 +106,8 @@ def Mises_strain(epsilon):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
epsilon : numpy.array of shape (x,3,3) or (3,3)
|
epsilon : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Symmetric strain tensor.
|
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
s = deviatoric_part(epsilon)
|
s = deviatoric_part(epsilon)
|
||||||
return np.sqrt(2.0/3.0*np.trace(s)) if np.shape(epsilon) == (3,3) else \
|
return np.sqrt(2.0/3.0*np.trace(s)) if np.shape(epsilon) == (3,3) else \
|
||||||
|
@ -118,7 +121,8 @@ def symmetric(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Tensor.
|
Tensor of which the symmetrized values are computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return (x+transpose(x))*0.5
|
return (x+transpose(x))*0.5
|
||||||
|
|
||||||
|
@ -130,10 +134,11 @@ def maximum_shear(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Symmetric tensor.
|
Symmetric tensor of which the maximum shear is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||||
return (w[2] - w[0])*0.5 if np.shape(epsilon) == (3,3) else \
|
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
|
||||||
(w[:,2] - w[:,0])*0.5
|
(w[:,2] - w[:,0])*0.5
|
||||||
|
|
||||||
|
|
||||||
|
@ -147,10 +152,11 @@ def principal_components(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Symmetric tensor.
|
Symmetric tensor of which the principal compontents are computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||||
return w[::-1] if np.shape(epsilon) == (3,3) else \
|
return w[::-1] if np.shape(x) == (3,3) else \
|
||||||
w[:,::-1]
|
w[:,::-1]
|
||||||
|
|
||||||
|
|
||||||
|
@ -161,7 +167,8 @@ def transpose(x):
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
x : numpy.array of shape (x,3,3) or (3,3)
|
x : numpy.array of shape (x,3,3) or (3,3)
|
||||||
Tensor.
|
Tensor of which the transpose is computer.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return x.T if np.shape(x) == (3,3) else \
|
return x.T if np.shape(x) == (3,3) else \
|
||||||
np.transpose(x,(0,2,1))
|
np.transpose(x,(0,2,1))
|
||||||
|
|
Loading…
Reference in New Issue