rewrite class Loadcase
1. add 2 dimension random load case generator 2. add Vegter load case generator(typical stress points in 2D)
This commit is contained in:
parent
271c9eed8b
commit
a62fa5d5dd
|
@ -154,7 +154,7 @@ class Hill1948(object):
|
||||||
|
|
||||||
class Hill1979(object):
|
class Hill1979(object):
|
||||||
'''
|
'''
|
||||||
residuum of Hill 1979 quadratic yield criterion (eq. 2.48)
|
residuum of Hill 1979 non-quadratic yield criterion (eq. 2.48)
|
||||||
'''
|
'''
|
||||||
def __init__(self, uniaxialStress):
|
def __init__(self, uniaxialStress):
|
||||||
self.stress0 = uniaxialStress
|
self.stress0 = uniaxialStress
|
||||||
|
@ -925,84 +925,84 @@ def KarafillisBoyceBasis(sigma0, c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26
|
||||||
|
|
||||||
fittingCriteria = {
|
fittingCriteria = {
|
||||||
'tresca' :{'func' : Tresca,
|
'tresca' :{'func' : Tresca,
|
||||||
'num' : 1,'err':np.inf,
|
'num' : 1,
|
||||||
'name' : 'Tresca',
|
'name' : 'Tresca',
|
||||||
'paras': 'Initial yield stress:',
|
'paras': 'Initial yield stress:',
|
||||||
'text' : '\nCoefficient of Tresca criterion:\nsigma0: ',
|
'text' : '\nCoefficient of Tresca criterion:\nsigma0: ',
|
||||||
'error': 'The standard deviation error is: '
|
'error': 'The standard deviation error is: '
|
||||||
},
|
},
|
||||||
'vonmises' :{'func' : vonMises,
|
'vonmises' :{'func' : vonMises,
|
||||||
'num' : 1,'err':np.inf,
|
'num' : 1,
|
||||||
'name' : 'Huber-Mises-Hencky(von Mises)',
|
'name' : 'Huber-Mises-Hencky(von Mises)',
|
||||||
'paras': 'Initial yield stress:',
|
'paras': 'Initial yield stress:',
|
||||||
'text' : '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: ',
|
'text' : '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: ',
|
||||||
'error': 'The standard deviation error is: '
|
'error': 'The standard deviation error is: '
|
||||||
},
|
},
|
||||||
'hosfordiso' :{'func' : Hosford,
|
'hosfordiso' :{'func' : Hosford,
|
||||||
'num' : 2,'err':np.inf,
|
'num' : 2,
|
||||||
'name' : 'Gerenal isotropic Hosford',
|
'name' : 'Gerenal isotropic Hosford',
|
||||||
'paras': 'Initial yield stress, a:',
|
'paras': 'Initial yield stress, a:',
|
||||||
'text' : '\nCoefficients of Hosford criterion:\nsigma0, a: ',
|
'text' : '\nCoefficients of Hosford criterion:\nsigma0, a: ',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'hosfordaniso' :{'func' : generalHosford,
|
'hosfordaniso' :{'func' : generalHosford,
|
||||||
'num' : 5,'err':np.inf,
|
'num' : 5,
|
||||||
'name' : 'Gerenal isotropic Hosford',
|
'name' : 'Gerenal isotropic Hosford',
|
||||||
'paras': 'Initial yield stress, F, G, H, a:',
|
'paras': 'Initial yield stress, F, G, H, a:',
|
||||||
'text' : '\nCoefficients of Hosford criterion:\nsigma0, F, G, H, a: ',
|
'text' : '\nCoefficients of Hosford criterion:\nsigma0, F, G, H, a: ',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'hill1948' :{'func' : Hill1948,
|
'hill1948' :{'func' : Hill1948,
|
||||||
'num' : 6,'err':np.inf,
|
'num' : 6,
|
||||||
'name' : 'Hill1948',
|
'name' : 'Hill1948',
|
||||||
'paras': 'Normalized [F, G, H, L, M, N]:',
|
'paras': 'Normalized [F, G, H, L, M, N]:',
|
||||||
'text' : '\nCoefficients of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16,
|
'text' : '\nCoefficients of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16,
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'hill1979' :{'func' : Hill1979,
|
'hill1979' :{'func' : Hill1979,
|
||||||
'num' : 7,'err':np.inf,
|
'num' : 7,
|
||||||
'name' : 'Hill1979',
|
'name' : 'Hill1979',
|
||||||
'paras': 'f,g,h,a,b,c,m:',
|
'paras': 'f,g,h,a,b,c,m:',
|
||||||
'text' : '\nCoefficients of Hill1979 criterion:\n f,g,h,a,b,c,m:\n',
|
'text' : '\nCoefficients of Hill1979 criterion:\n f,g,h,a,b,c,m:\n',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'drucker' :{'func' : Drucker,
|
'drucker' :{'func' : Drucker,
|
||||||
'num' : 2,'err':np.inf,
|
'num' : 2,
|
||||||
'name' : 'Drucker',
|
'name' : 'Drucker',
|
||||||
'paras': 'Initial yield stress, C_D:',
|
'paras': 'Initial yield stress, C_D:',
|
||||||
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D: ',
|
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D: ',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'gdrucker' :{'func' : generalDrucker,
|
'gdrucker' :{'func' : generalDrucker,
|
||||||
'num' : 3,'err':np.inf,
|
'num' : 3,
|
||||||
'name' : 'General Drucker',
|
'name' : 'General Drucker',
|
||||||
'paras': 'Initial yield stress, C_D, p:',
|
'paras': 'Initial yield stress, C_D, p:',
|
||||||
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D, p: ',
|
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D, p: ',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'barlat1991iso' :{'func' : Barlat1991iso,
|
'barlat1991iso' :{'func' : Barlat1991iso,
|
||||||
'num' : 2,'err':np.inf,
|
'num' : 2,
|
||||||
'name' : 'Barlat1991iso',
|
'name' : 'Barlat1991iso',
|
||||||
'paras': 'Initial yield stress, m:',
|
'paras': 'Initial yield stress, m:',
|
||||||
'text' : '\nCoefficients of isotropic Barlat 1991 criterion:\nsigma0, m:\n',
|
'text' : '\nCoefficients of isotropic Barlat 1991 criterion:\nsigma0, m:\n',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'barlat1991aniso':{'func' : Barlat1991aniso,
|
'barlat1991aniso':{'func' : Barlat1991aniso,
|
||||||
'num' : 8,'err':np.inf,
|
'num' : 8,
|
||||||
'name' : 'Barlat1991aniso',
|
'name' : 'Barlat1991aniso',
|
||||||
'paras': 'Initial yield stress, a, b, c, f, g, h, m:',
|
'paras': 'Initial yield stress, a, b, c, f, g, h, m:',
|
||||||
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, f, g, h, m:\n',
|
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, f, g, h, m:\n',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'bbc2003' :{'func' : BBC2003,
|
'bbc2003' :{'func' : BBC2003,
|
||||||
'num' : 9,'err':np.inf,
|
'num' : 9,
|
||||||
'name' : 'Banabic-Balan-Comsa 2003',
|
'name' : 'Banabic-Balan-Comsa 2003',
|
||||||
'paras': 'Initial yield stress, a, b, c, d, e, f, g, k:',
|
'paras': 'Initial yield stress, a, b, c, d, e, f, g, k:',
|
||||||
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, d, e, f, g, k:\n',
|
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, d, e, f, g, k:\n',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'Cazacu_Barlat2D':{'func' : Cazacu_Barlat2D,
|
'Cazacu_Barlat2D':{'func' : Cazacu_Barlat2D,
|
||||||
'num' : 11,'err':np.inf,
|
'num' : 11,
|
||||||
'name' : 'Cazacu Barlat for plain stress',
|
'name' : 'Cazacu Barlat for plain stress',
|
||||||
'paras': 'a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:',
|
'paras': 'a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:',
|
||||||
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
|
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
|
||||||
|
@ -1010,7 +1010,7 @@ fittingCriteria = {
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'Cazacu_Barlat3D':{'func' : Cazacu_Barlat3D,
|
'Cazacu_Barlat3D':{'func' : Cazacu_Barlat3D,
|
||||||
'num' : 18,'err':np.inf,
|
'num' : 18,
|
||||||
'name' : 'Cazacu Barlat',
|
'name' : 'Cazacu Barlat',
|
||||||
'paras': 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c:',
|
'paras': 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c:',
|
||||||
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
|
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
|
||||||
|
@ -1018,7 +1018,7 @@ fittingCriteria = {
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'yld200418p' :{'func' : Yld200418p,
|
'yld200418p' :{'func' : Yld200418p,
|
||||||
'num' : 20,'err':np.inf,
|
'num' : 20,
|
||||||
'name' : 'Yld200418p',
|
'name' : 'Yld200418p',
|
||||||
'paras': 'Equivalent stress,c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m:',
|
'paras': 'Equivalent stress,c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m:',
|
||||||
'text' : '\nCoefficients of Yld2004-18p yield criterion: \
|
'text' : '\nCoefficients of Yld2004-18p yield criterion: \
|
||||||
|
@ -1026,15 +1026,13 @@ fittingCriteria = {
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
},
|
||||||
'karafillis' :{'func' : KarafillisBoyce,
|
'karafillis' :{'func' : KarafillisBoyce,
|
||||||
'num' : 16,'err':np.inf,
|
'num' : 16,
|
||||||
'name' : 'Yld200418p',
|
'name' : 'Yld200418p',
|
||||||
'paras': 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha',
|
'paras': 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha',
|
||||||
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: \
|
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: \
|
||||||
\n c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha\n',
|
\n c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha\n',
|
||||||
'error': 'The standard deviation errors are: '
|
'error': 'The standard deviation errors are: '
|
||||||
},
|
}
|
||||||
'worst' :{'err':np.inf},
|
|
||||||
'best' :{'err':np.inf}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for key in fittingCriteria.keys():
|
for key in fittingCriteria.keys():
|
||||||
|
@ -1052,16 +1050,33 @@ class Loadcase():
|
||||||
'''
|
'''
|
||||||
|
|
||||||
# ------------------------------------------------------------------
|
# ------------------------------------------------------------------
|
||||||
def __init__(self,finalStrain,incs,time,ND=3,RD=1):
|
def __init__(self,finalStrain,incs,time,ND=3,RD=1,nSet=1,dimension=3,vegter=False):
|
||||||
print('using the random load case generator')
|
print('using the random load case generator')
|
||||||
self.finalStrain = finalStrain
|
self.finalStrain = finalStrain
|
||||||
self.incs = incs
|
self.incs = incs
|
||||||
self.time = time
|
self.time = time
|
||||||
self.ND = ND
|
self.ND = ND
|
||||||
self.RD = RD
|
self.RD = RD
|
||||||
|
self.nSet = nSet
|
||||||
|
self.dimension = dimension
|
||||||
|
self.vegter = vegter
|
||||||
self.NgeneratedLoadCases = 0
|
self.NgeneratedLoadCases = 0
|
||||||
|
if self.vegter:
|
||||||
|
self.vegterLoadcase = self._vegterLoadcase()
|
||||||
|
|
||||||
def getLoadcase(self):
|
def getLoadcase(self,number):
|
||||||
|
if self.dimension == 3:
|
||||||
|
print 'generate random 3D load case'
|
||||||
|
return self._getLoadcase3D()
|
||||||
|
else:
|
||||||
|
if self.vegter is True:
|
||||||
|
print 'generate load case for Vegter'
|
||||||
|
return self._getLoadcase2dVegter(number)
|
||||||
|
else:
|
||||||
|
print 'generate random 2D load case'
|
||||||
|
return self._getLoadcase2dRandom()
|
||||||
|
|
||||||
|
def getLoadcase3D(self):
|
||||||
self.NgeneratedLoadCases+=1
|
self.NgeneratedLoadCases+=1
|
||||||
defgrad=['*']*9
|
defgrad=['*']*9
|
||||||
stress =[0]*9
|
stress =[0]*9
|
||||||
|
@ -1085,17 +1100,68 @@ class Loadcase():
|
||||||
' incs %s'%self.incs+\
|
' incs %s'%self.incs+\
|
||||||
' time %s'%self.time
|
' time %s'%self.time
|
||||||
|
|
||||||
def getVegterLoadcase(self): #for a 2D simulation, I would use this generator befor switching to a random 2D generator
|
def _getLoadcase2dVegter(self,number): #for a 2D simulation, I would use this generator before switching to a random 2D generator
|
||||||
defgrad=['*']*9
|
|
||||||
stress =[0]*9
|
|
||||||
NDzero=[[1,2,3,6],[1,3,5,7],[2,5,6,7]] # no deformation / * for stress
|
NDzero=[[1,2,3,6],[1,3,5,7],[2,5,6,7]] # no deformation / * for stress
|
||||||
# biaxial f1 = f2
|
# biaxial f1 = f2
|
||||||
# shear f1 = -f2
|
# shear f1 = -f2
|
||||||
# unixaial f1 , f2 =0
|
# unixaial f1 , f2 =0
|
||||||
# plane strain f1 , s2 =0
|
# plane strain f1 , s2 =0
|
||||||
# modulo to get one out of 4
|
# modulo to get one out of 4
|
||||||
|
stress =['*', '*', '0']*3
|
||||||
|
defgrad = self.vegterLoadcase[number-1]
|
||||||
|
|
||||||
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||||||
|
' p '+' '.join(str(c) for c in stress)+\
|
||||||
|
' incs %s'%self.incs+\
|
||||||
|
' time %s'%self.time
|
||||||
|
|
||||||
|
def _vegterLoadcase(self):
|
||||||
|
'''
|
||||||
|
generate the stress points for Vegter criteria
|
||||||
|
'''
|
||||||
|
theta = np.linspace(0.0,np.pi/2.0,self.nSet)
|
||||||
|
f = [0.0, 0.0, '*']*3; loadcase = []
|
||||||
|
for i in xrange(self.nSet*4): loadcase.append(f)
|
||||||
|
|
||||||
|
# more to do for F
|
||||||
|
F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension
|
||||||
|
[[1.1, 0.1], [0.1, 1.1]], # shear
|
||||||
|
[[1.1, 0.1], [0.1, 1.1]], # eq-biaxial
|
||||||
|
[[1.1, 0.1], [0.1, 1.1]], # eq-biaxial
|
||||||
|
])
|
||||||
|
for i,t in enumerate(theta):
|
||||||
|
R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2)
|
||||||
|
for j in xrange(4):
|
||||||
|
loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4)
|
||||||
|
return loadcase
|
||||||
|
|
||||||
|
def _getLoadcase2dRandom(self):
|
||||||
|
'''
|
||||||
|
generate random stress points for 2D tests
|
||||||
|
'''
|
||||||
self.NgeneratedLoadCases+=1
|
self.NgeneratedLoadCases+=1
|
||||||
|
defgrad=['0', '0', '*']*3
|
||||||
|
stress =['*', '*', '0']*3
|
||||||
|
defgrad[0],defgrad[1],defgrad[3],defgrad[4] = (np.random.random_sample(4)-.5)*self.finalStrain*2.0 + np.eye(2).reshape(4)
|
||||||
|
|
||||||
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||||||
|
' p '+' '.join(str(c) for c in stress)+\
|
||||||
|
' incs %s'%self.incs+\
|
||||||
|
' time %s'%self.time
|
||||||
|
def _defgradScale(self, defgrad, finalStrain):
|
||||||
|
'''
|
||||||
|
'''
|
||||||
|
defgrad0 = (np.array([ 0.0 if i is '*' else i for i in defgrad ]))
|
||||||
|
det0 = 1.0 - numpy.linalg.det(defgrad0.reshape(3,3))
|
||||||
|
if defgrad0[0] == 0.0: defgrad0[0] = det0/(defgrad0[4]*defgrad0[8]-defgrad0[5]*defgrad0[7])
|
||||||
|
if defgrad0[4] == 0.0: defgrad0[4] = det0/(defgrad0[0]*defgrad0[8]-defgrad0[2]*defgrad0[6])
|
||||||
|
if defgrad0[8] == 0.0: defgrad0[8] = det0/(defgrad0[0]*defgrad0[4]-defgrad0[1]*defgrad0[3])
|
||||||
|
strain = np.dot(defgrad0.reshape(3,3).T,defgrad0.reshape(3,3)) - np.eye(3)
|
||||||
|
eqstrain = 2.0/3.0*np.sqrt( 1.5*(strain[0][0]**2+strain[1][1]**2+strain[2][2]**2) +
|
||||||
|
3.0*(strain[0][1]**2+strain[1][2]**2+strain[2][0]**2) )
|
||||||
|
r = finalStrain*1.25/eqstrain
|
||||||
|
# if r>1.0: defgrad =( np.array([i*r if i is not '*' else i for i in defgrad]))
|
||||||
|
|
||||||
|
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
class Criterion(object):
|
class Criterion(object):
|
||||||
|
@ -1125,6 +1191,7 @@ class Criterion(object):
|
||||||
criteria = criteriaClass(0.0)
|
criteria = criteriaClass(0.0)
|
||||||
if fitResults == [] : initialguess = guess0
|
if fitResults == [] : initialguess = guess0
|
||||||
else : initialguess = np.array(fitResults[-1])
|
else : initialguess = np.array(fitResults[-1])
|
||||||
|
|
||||||
weight = get_weight(np.shape(stress)[1])
|
weight = get_weight(np.shape(stress)[1])
|
||||||
ydata = np.zeros(np.shape(stress)[1])
|
ydata = np.zeros(np.shape(stress)[1])
|
||||||
try:
|
try:
|
||||||
|
@ -1169,7 +1236,7 @@ class myThread (threading.Thread):
|
||||||
def doSim(delay,thread):
|
def doSim(delay,thread):
|
||||||
|
|
||||||
s.acquire()
|
s.acquire()
|
||||||
me=getLoadcase()
|
me=loadcaseNo()
|
||||||
if not os.path.isfile('%s.load'%me):
|
if not os.path.isfile('%s.load'%me):
|
||||||
print('generating loadcase for sim %s from %s'%(me,thread))
|
print('generating loadcase for sim %s from %s'%(me,thread))
|
||||||
f=open('%s.load'%me,'w')
|
f=open('%s.load'%me,'w')
|
||||||
|
@ -1258,7 +1325,7 @@ def doSim(delay,thread):
|
||||||
return
|
return
|
||||||
s.release()
|
s.release()
|
||||||
|
|
||||||
def getLoadcase():
|
def loadcaseNo():
|
||||||
global N_simulations
|
global N_simulations
|
||||||
N_simulations+=1
|
N_simulations+=1
|
||||||
return N_simulations
|
return N_simulations
|
||||||
|
@ -1296,6 +1363,10 @@ parser.add_option('--max', dest='max', type='int',
|
||||||
help='maximum number of iterations [%default]', metavar='int')
|
help='maximum number of iterations [%default]', metavar='int')
|
||||||
parser.add_option('-t','--threads', dest='threads', type='int',
|
parser.add_option('-t','--threads', dest='threads', type='int',
|
||||||
help='number of parallel executions [%default]', metavar='int')
|
help='number of parallel executions [%default]', metavar='int')
|
||||||
|
parser.add_option('-d','--dimension', dest='dimension', type='int',
|
||||||
|
help='dimension of the virtual test [%default]', metavar='int')
|
||||||
|
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
|
||||||
|
help='Vegter criteria [%default]')
|
||||||
parser.set_defaults(min = 12)
|
parser.set_defaults(min = 12)
|
||||||
parser.set_defaults(max = 30)
|
parser.set_defaults(max = 30)
|
||||||
parser.set_defaults(threads = 4)
|
parser.set_defaults(threads = 4)
|
||||||
|
@ -1304,6 +1375,9 @@ parser.set_defaults(load = (0.010,100,100.0))
|
||||||
parser.set_defaults(criterion = 'worst')
|
parser.set_defaults(criterion = 'worst')
|
||||||
parser.set_defaults(fitting = 'totalshear')
|
parser.set_defaults(fitting = 'totalshear')
|
||||||
parser.set_defaults(geometry = '20grains16x16x16')
|
parser.set_defaults(geometry = '20grains16x16x16')
|
||||||
|
parser.set_defaults(dimension = 3)
|
||||||
|
parser.set_defaults(vegter = 'False')
|
||||||
|
|
||||||
|
|
||||||
options = parser.parse_args()[0]
|
options = parser.parse_args()[0]
|
||||||
|
|
||||||
|
@ -1327,6 +1401,8 @@ if not os.path.isfile('numerics.config'):
|
||||||
if not os.path.isfile('material.config'):
|
if not os.path.isfile('material.config'):
|
||||||
print('material.config file not found')
|
print('material.config file not found')
|
||||||
|
|
||||||
|
if options.vegter is True:
|
||||||
|
options.dimension = 2
|
||||||
unitGPa = 10.e8
|
unitGPa = 10.e8
|
||||||
N_simulations=0
|
N_simulations=0
|
||||||
fitResults = []
|
fitResults = []
|
||||||
|
@ -1334,7 +1410,8 @@ s=threading.Semaphore(1)
|
||||||
|
|
||||||
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
||||||
strainAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
strainAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
||||||
myLoad = Loadcase(options.load[0],options.load[1],options.load[2])
|
myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
|
||||||
|
nSet = 10, dimension = options.dimension, vegter = options.vegter)
|
||||||
myFit = Criterion(options.criterion)
|
myFit = Criterion(options.criterion)
|
||||||
|
|
||||||
threads=[]
|
threads=[]
|
||||||
|
|
Loading…
Reference in New Issue