rewrite class Loadcase

1. add 2 dimension random load case generator
2. add Vegter load case generator(typical stress points in 2D)
This commit is contained in:
Haiming Zhang 2015-03-09 21:57:22 +00:00
parent 271c9eed8b
commit a62fa5d5dd
1 changed files with 104 additions and 27 deletions

View File

@ -154,7 +154,7 @@ class Hill1948(object):
class Hill1979(object): class Hill1979(object):
''' '''
residuum of Hill 1979 quadratic yield criterion (eq. 2.48) residuum of Hill 1979 non-quadratic yield criterion (eq. 2.48)
''' '''
def __init__(self, uniaxialStress): def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress self.stress0 = uniaxialStress
@ -925,84 +925,84 @@ def KarafillisBoyceBasis(sigma0, c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26
fittingCriteria = { fittingCriteria = {
'tresca' :{'func' : Tresca, 'tresca' :{'func' : Tresca,
'num' : 1,'err':np.inf, 'num' : 1,
'name' : 'Tresca', 'name' : 'Tresca',
'paras': 'Initial yield stress:', 'paras': 'Initial yield stress:',
'text' : '\nCoefficient of Tresca criterion:\nsigma0: ', 'text' : '\nCoefficient of Tresca criterion:\nsigma0: ',
'error': 'The standard deviation error is: ' 'error': 'The standard deviation error is: '
}, },
'vonmises' :{'func' : vonMises, 'vonmises' :{'func' : vonMises,
'num' : 1,'err':np.inf, 'num' : 1,
'name' : 'Huber-Mises-Hencky(von Mises)', 'name' : 'Huber-Mises-Hencky(von Mises)',
'paras': 'Initial yield stress:', 'paras': 'Initial yield stress:',
'text' : '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: ', 'text' : '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: ',
'error': 'The standard deviation error is: ' 'error': 'The standard deviation error is: '
}, },
'hosfordiso' :{'func' : Hosford, 'hosfordiso' :{'func' : Hosford,
'num' : 2,'err':np.inf, 'num' : 2,
'name' : 'Gerenal isotropic Hosford', 'name' : 'Gerenal isotropic Hosford',
'paras': 'Initial yield stress, a:', 'paras': 'Initial yield stress, a:',
'text' : '\nCoefficients of Hosford criterion:\nsigma0, a: ', 'text' : '\nCoefficients of Hosford criterion:\nsigma0, a: ',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'hosfordaniso' :{'func' : generalHosford, 'hosfordaniso' :{'func' : generalHosford,
'num' : 5,'err':np.inf, 'num' : 5,
'name' : 'Gerenal isotropic Hosford', 'name' : 'Gerenal isotropic Hosford',
'paras': 'Initial yield stress, F, G, H, a:', 'paras': 'Initial yield stress, F, G, H, a:',
'text' : '\nCoefficients of Hosford criterion:\nsigma0, F, G, H, a: ', 'text' : '\nCoefficients of Hosford criterion:\nsigma0, F, G, H, a: ',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'hill1948' :{'func' : Hill1948, 'hill1948' :{'func' : Hill1948,
'num' : 6,'err':np.inf, 'num' : 6,
'name' : 'Hill1948', 'name' : 'Hill1948',
'paras': 'Normalized [F, G, H, L, M, N]:', 'paras': 'Normalized [F, G, H, L, M, N]:',
'text' : '\nCoefficients of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16, 'text' : '\nCoefficients of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16,
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'hill1979' :{'func' : Hill1979, 'hill1979' :{'func' : Hill1979,
'num' : 7,'err':np.inf, 'num' : 7,
'name' : 'Hill1979', 'name' : 'Hill1979',
'paras': 'f,g,h,a,b,c,m:', 'paras': 'f,g,h,a,b,c,m:',
'text' : '\nCoefficients of Hill1979 criterion:\n f,g,h,a,b,c,m:\n', 'text' : '\nCoefficients of Hill1979 criterion:\n f,g,h,a,b,c,m:\n',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'drucker' :{'func' : Drucker, 'drucker' :{'func' : Drucker,
'num' : 2,'err':np.inf, 'num' : 2,
'name' : 'Drucker', 'name' : 'Drucker',
'paras': 'Initial yield stress, C_D:', 'paras': 'Initial yield stress, C_D:',
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D: ', 'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D: ',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'gdrucker' :{'func' : generalDrucker, 'gdrucker' :{'func' : generalDrucker,
'num' : 3,'err':np.inf, 'num' : 3,
'name' : 'General Drucker', 'name' : 'General Drucker',
'paras': 'Initial yield stress, C_D, p:', 'paras': 'Initial yield stress, C_D, p:',
'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D, p: ', 'text' : '\nCoefficients of Drucker criterion:\nsigma0, C_D, p: ',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'barlat1991iso' :{'func' : Barlat1991iso, 'barlat1991iso' :{'func' : Barlat1991iso,
'num' : 2,'err':np.inf, 'num' : 2,
'name' : 'Barlat1991iso', 'name' : 'Barlat1991iso',
'paras': 'Initial yield stress, m:', 'paras': 'Initial yield stress, m:',
'text' : '\nCoefficients of isotropic Barlat 1991 criterion:\nsigma0, m:\n', 'text' : '\nCoefficients of isotropic Barlat 1991 criterion:\nsigma0, m:\n',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'barlat1991aniso':{'func' : Barlat1991aniso, 'barlat1991aniso':{'func' : Barlat1991aniso,
'num' : 8,'err':np.inf, 'num' : 8,
'name' : 'Barlat1991aniso', 'name' : 'Barlat1991aniso',
'paras': 'Initial yield stress, a, b, c, f, g, h, m:', 'paras': 'Initial yield stress, a, b, c, f, g, h, m:',
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, f, g, h, m:\n', 'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, f, g, h, m:\n',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'bbc2003' :{'func' : BBC2003, 'bbc2003' :{'func' : BBC2003,
'num' : 9,'err':np.inf, 'num' : 9,
'name' : 'Banabic-Balan-Comsa 2003', 'name' : 'Banabic-Balan-Comsa 2003',
'paras': 'Initial yield stress, a, b, c, d, e, f, g, k:', 'paras': 'Initial yield stress, a, b, c, d, e, f, g, k:',
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, d, e, f, g, k:\n', 'text' : '\nCoefficients of anisotropic Barlat 1991 criterion:\nsigma0, a, b, c, d, e, f, g, k:\n',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'Cazacu_Barlat2D':{'func' : Cazacu_Barlat2D, 'Cazacu_Barlat2D':{'func' : Cazacu_Barlat2D,
'num' : 11,'err':np.inf, 'num' : 11,
'name' : 'Cazacu Barlat for plain stress', 'name' : 'Cazacu Barlat for plain stress',
'paras': 'a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:', 'paras': 'a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c:',
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \ 'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
@ -1010,7 +1010,7 @@ fittingCriteria = {
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'Cazacu_Barlat3D':{'func' : Cazacu_Barlat3D, 'Cazacu_Barlat3D':{'func' : Cazacu_Barlat3D,
'num' : 18,'err':np.inf, 'num' : 18,
'name' : 'Cazacu Barlat', 'name' : 'Cazacu Barlat',
'paras': 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c:', 'paras': 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c:',
'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \ 'text' : '\nCoefficients of Cazacu Barlat yield criterion for plane stress: \
@ -1018,7 +1018,7 @@ fittingCriteria = {
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'yld200418p' :{'func' : Yld200418p, 'yld200418p' :{'func' : Yld200418p,
'num' : 20,'err':np.inf, 'num' : 20,
'name' : 'Yld200418p', 'name' : 'Yld200418p',
'paras': 'Equivalent stress,c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m:', 'paras': 'Equivalent stress,c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m:',
'text' : '\nCoefficients of Yld2004-18p yield criterion: \ 'text' : '\nCoefficients of Yld2004-18p yield criterion: \
@ -1026,15 +1026,13 @@ fittingCriteria = {
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, },
'karafillis' :{'func' : KarafillisBoyce, 'karafillis' :{'func' : KarafillisBoyce,
'num' : 16,'err':np.inf, 'num' : 16,
'name' : 'Yld200418p', 'name' : 'Yld200418p',
'paras': 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha', 'paras': 'c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha',
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: \ 'text' : '\nCoefficients of Karafillis-Boyce yield criterion: \
\n c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha\n', \n c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,b1,b2,a,alpha\n',
'error': 'The standard deviation errors are: ' 'error': 'The standard deviation errors are: '
}, }
'worst' :{'err':np.inf},
'best' :{'err':np.inf}
} }
for key in fittingCriteria.keys(): for key in fittingCriteria.keys():
@ -1052,16 +1050,33 @@ class Loadcase():
''' '''
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __init__(self,finalStrain,incs,time,ND=3,RD=1): def __init__(self,finalStrain,incs,time,ND=3,RD=1,nSet=1,dimension=3,vegter=False):
print('using the random load case generator') print('using the random load case generator')
self.finalStrain = finalStrain self.finalStrain = finalStrain
self.incs = incs self.incs = incs
self.time = time self.time = time
self.ND = ND self.ND = ND
self.RD = RD self.RD = RD
self.nSet = nSet
self.dimension = dimension
self.vegter = vegter
self.NgeneratedLoadCases = 0 self.NgeneratedLoadCases = 0
if self.vegter:
self.vegterLoadcase = self._vegterLoadcase()
def getLoadcase(self): def getLoadcase(self,number):
if self.dimension == 3:
print 'generate random 3D load case'
return self._getLoadcase3D()
else:
if self.vegter is True:
print 'generate load case for Vegter'
return self._getLoadcase2dVegter(number)
else:
print 'generate random 2D load case'
return self._getLoadcase2dRandom()
def getLoadcase3D(self):
self.NgeneratedLoadCases+=1 self.NgeneratedLoadCases+=1
defgrad=['*']*9 defgrad=['*']*9
stress =[0]*9 stress =[0]*9
@ -1085,17 +1100,68 @@ class Loadcase():
' incs %s'%self.incs+\ ' incs %s'%self.incs+\
' time %s'%self.time ' time %s'%self.time
def getVegterLoadcase(self): #for a 2D simulation, I would use this generator befor switching to a random 2D generator def _getLoadcase2dVegter(self,number): #for a 2D simulation, I would use this generator before switching to a random 2D generator
defgrad=['*']*9
stress =[0]*9
NDzero=[[1,2,3,6],[1,3,5,7],[2,5,6,7]] # no deformation / * for stress NDzero=[[1,2,3,6],[1,3,5,7],[2,5,6,7]] # no deformation / * for stress
# biaxial f1 = f2 # biaxial f1 = f2
# shear f1 = -f2 # shear f1 = -f2
# unixaial f1 , f2 =0 # unixaial f1 , f2 =0
# plane strain f1 , s2 =0 # plane strain f1 , s2 =0
# modulo to get one out of 4 # modulo to get one out of 4
stress =['*', '*', '0']*3
defgrad = self.vegterLoadcase[number-1]
return 'f '+' '.join(str(c) for c in defgrad)+\
' p '+' '.join(str(c) for c in stress)+\
' incs %s'%self.incs+\
' time %s'%self.time
def _vegterLoadcase(self):
'''
generate the stress points for Vegter criteria
'''
theta = np.linspace(0.0,np.pi/2.0,self.nSet)
f = [0.0, 0.0, '*']*3; loadcase = []
for i in xrange(self.nSet*4): loadcase.append(f)
# more to do for F
F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension
[[1.1, 0.1], [0.1, 1.1]], # shear
[[1.1, 0.1], [0.1, 1.1]], # eq-biaxial
[[1.1, 0.1], [0.1, 1.1]], # eq-biaxial
])
for i,t in enumerate(theta):
R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2)
for j in xrange(4):
loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4)
return loadcase
def _getLoadcase2dRandom(self):
'''
generate random stress points for 2D tests
'''
self.NgeneratedLoadCases+=1 self.NgeneratedLoadCases+=1
defgrad=['0', '0', '*']*3
stress =['*', '*', '0']*3
defgrad[0],defgrad[1],defgrad[3],defgrad[4] = (np.random.random_sample(4)-.5)*self.finalStrain*2.0 + np.eye(2).reshape(4)
return 'f '+' '.join(str(c) for c in defgrad)+\
' p '+' '.join(str(c) for c in stress)+\
' incs %s'%self.incs+\
' time %s'%self.time
def _defgradScale(self, defgrad, finalStrain):
'''
'''
defgrad0 = (np.array([ 0.0 if i is '*' else i for i in defgrad ]))
det0 = 1.0 - numpy.linalg.det(defgrad0.reshape(3,3))
if defgrad0[0] == 0.0: defgrad0[0] = det0/(defgrad0[4]*defgrad0[8]-defgrad0[5]*defgrad0[7])
if defgrad0[4] == 0.0: defgrad0[4] = det0/(defgrad0[0]*defgrad0[8]-defgrad0[2]*defgrad0[6])
if defgrad0[8] == 0.0: defgrad0[8] = det0/(defgrad0[0]*defgrad0[4]-defgrad0[1]*defgrad0[3])
strain = np.dot(defgrad0.reshape(3,3).T,defgrad0.reshape(3,3)) - np.eye(3)
eqstrain = 2.0/3.0*np.sqrt( 1.5*(strain[0][0]**2+strain[1][1]**2+strain[2][2]**2) +
3.0*(strain[0][1]**2+strain[1][2]**2+strain[2][0]**2) )
r = finalStrain*1.25/eqstrain
# if r>1.0: defgrad =( np.array([i*r if i is not '*' else i for i in defgrad]))
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Criterion(object): class Criterion(object):
@ -1125,6 +1191,7 @@ class Criterion(object):
criteria = criteriaClass(0.0) criteria = criteriaClass(0.0)
if fitResults == [] : initialguess = guess0 if fitResults == [] : initialguess = guess0
else : initialguess = np.array(fitResults[-1]) else : initialguess = np.array(fitResults[-1])
weight = get_weight(np.shape(stress)[1]) weight = get_weight(np.shape(stress)[1])
ydata = np.zeros(np.shape(stress)[1]) ydata = np.zeros(np.shape(stress)[1])
try: try:
@ -1169,7 +1236,7 @@ class myThread (threading.Thread):
def doSim(delay,thread): def doSim(delay,thread):
s.acquire() s.acquire()
me=getLoadcase() me=loadcaseNo()
if not os.path.isfile('%s.load'%me): if not os.path.isfile('%s.load'%me):
print('generating loadcase for sim %s from %s'%(me,thread)) print('generating loadcase for sim %s from %s'%(me,thread))
f=open('%s.load'%me,'w') f=open('%s.load'%me,'w')
@ -1258,7 +1325,7 @@ def doSim(delay,thread):
return return
s.release() s.release()
def getLoadcase(): def loadcaseNo():
global N_simulations global N_simulations
N_simulations+=1 N_simulations+=1
return N_simulations return N_simulations
@ -1296,6 +1363,10 @@ parser.add_option('--max', dest='max', type='int',
help='maximum number of iterations [%default]', metavar='int') help='maximum number of iterations [%default]', metavar='int')
parser.add_option('-t','--threads', dest='threads', type='int', parser.add_option('-t','--threads', dest='threads', type='int',
help='number of parallel executions [%default]', metavar='int') help='number of parallel executions [%default]', metavar='int')
parser.add_option('-d','--dimension', dest='dimension', type='int',
help='dimension of the virtual test [%default]', metavar='int')
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
help='Vegter criteria [%default]')
parser.set_defaults(min = 12) parser.set_defaults(min = 12)
parser.set_defaults(max = 30) parser.set_defaults(max = 30)
parser.set_defaults(threads = 4) parser.set_defaults(threads = 4)
@ -1304,6 +1375,9 @@ parser.set_defaults(load = (0.010,100,100.0))
parser.set_defaults(criterion = 'worst') parser.set_defaults(criterion = 'worst')
parser.set_defaults(fitting = 'totalshear') parser.set_defaults(fitting = 'totalshear')
parser.set_defaults(geometry = '20grains16x16x16') parser.set_defaults(geometry = '20grains16x16x16')
parser.set_defaults(dimension = 3)
parser.set_defaults(vegter = 'False')
options = parser.parse_args()[0] options = parser.parse_args()[0]
@ -1327,6 +1401,8 @@ if not os.path.isfile('numerics.config'):
if not os.path.isfile('material.config'): if not os.path.isfile('material.config'):
print('material.config file not found') print('material.config file not found')
if options.vegter is True:
options.dimension = 2
unitGPa = 10.e8 unitGPa = 10.e8
N_simulations=0 N_simulations=0
fitResults = [] fitResults = []
@ -1334,7 +1410,8 @@ s=threading.Semaphore(1)
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
strainAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] strainAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
myLoad = Loadcase(options.load[0],options.load[1],options.load[2]) myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = options.dimension, vegter = options.vegter)
myFit = Criterion(options.criterion) myFit = Criterion(options.criterion)
threads=[] threads=[]