fixes (mainly tuple arguments for functions and lambda functions)

This commit is contained in:
Martin Diehl 2016-10-25 21:52:51 +02:00
parent ac5f19f1f6
commit a62ab3b5d4
1 changed files with 52 additions and 51 deletions

View File

@ -28,7 +28,7 @@ def runFit(exponent, eqStress, dimension, criterion):
nParas = nParas-nExpo nParas = nParas-nExpo
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas] fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
for i in xrange(nParas): for i in range(nParas):
temp = fitCriteria[criterion]['bound'][dDim][i] temp = fitCriteria[criterion]['bound'][dDim][i]
if fitCriteria[criterion]['bound'][dDim][i] == (None,None): if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
Guess.append(1.0) Guess.append(1.0)
@ -42,8 +42,8 @@ def runFit(exponent, eqStress, dimension, criterion):
myLoad = Loadcase(options.load[0],options.load[1],options.load[2], myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = dimension, vegter = options.criterion=='vegter') nSet = 10, dimension = dimension, vegter = options.criterion=='vegter')
stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] stressAll= [np.zeros(0,'d').reshape(0,0) for i in range(int(options.yieldValue[2]))]
strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] strainAll= [np.zeros(0,'d').reshape(0,0) for i in range(int(options.yieldValue[2]))]
myFit = Criterion(exponent,eqStress, dimension, criterion) myFit = Criterion(exponent,eqStress, dimension, criterion)
for t in range(options.threads): for t in range(options.threads):
@ -57,12 +57,12 @@ def runFit(exponent, eqStress, dimension, criterion):
def principalStresses(sigmas): def principalStresses(sigmas):
""" """
computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses. Computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses.
sorted in descending order. sorted in descending order.
""" """
lambdas=np.zeros(0,'d') lambdas=np.zeros(0,'d')
for i in xrange(np.shape(sigmas)[1]): for i in range(np.shape(sigmas)[1]):
eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i])) eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i]))
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3)) lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
@ -82,7 +82,7 @@ def principalStress(p):
t1 + t2*np.cos(phi+np.pi*2.0/3.0), t1 + t2*np.cos(phi+np.pi*2.0/3.0),
t1 + t2*np.cos(phi+np.pi*4.0/3.0)]) t1 + t2*np.cos(phi+np.pi*4.0/3.0)])
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False): def principalStrs_Der(p, s, dim, Karafillis=False):
"""Derivative of principal stress with respect to stress""" """Derivative of principal stress with respect to stress"""
third = 1.0/3.0 third = 1.0/3.0
third2 = 2.0*third third2 = 2.0*third
@ -111,31 +111,31 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3 dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3
# calculate the derivation of principal stress with regards to the anisotropic coefficients # calculate the derivation of principal stress with regards to the anisotropic coefficients
one = np.ones_like(s1); zero = np.zeros_like(s1); num = len(s1) one = np.ones_like(s); zero = np.zeros_like(s); num = len(s)
dIdp = np.array([[one, one, one, zero, zero, zero], dIdp = np.array([[one, one, one, zero, zero, zero],
[p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]], [p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]],
[p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2, [p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2,
-2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ]) -2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ])
if Karafillis: if Karafillis:
dpdc = np.array([[zero,s1-s3,s1-s2], [s2-s3,zero,s2-s1], [s3-s2,s3-s1,zero]])/3.0 dpdc = np.array([[zero,s[0]-s[2],s[0]-s[1]], [s[1]-s[2],zero,s[1]-s[0]], [s[2]-s[1],s[2]-s[0],zero]])/3.0
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(num)]).T dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in range(num)]).T
if dim == 2: if dim == 2:
temp = np.vstack([dSdp[:,3]*s4]).T.reshape(num,1,3).T temp = np.vstack([dSdp[:,3]*s[3]]).T.reshape(num,1,3).T
else: else:
temp = np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(num,3,3).T temp = np.vstack([dSdp[:,3]*s[3],dSdp[:,4]*s[4],dSdp[:,5]*s[5]]).T.reshape(num,3,3).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i]).T for i in xrange(num)]).T, return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i]).T for i in range(num)]).T,
temp), axis=1) temp), axis=1)
else: else:
if dim == 2: if dim == 2:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3, dIdc=np.array([[-dIdp[i,0]*s[1], -dIdp[i,1]*s[0], -dIdp[i,1]*s[2],
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3, -dIdp[i,2]*s[1], -dIdp[i,2]*s[0], -dIdp[i,0]*s[2],
dIdp[i,3]*s4 ] for i in xrange(3)]) dIdp[i,3]*s[3] ] for i in range(3)])
else: else:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3, dIdc=np.array([[-dIdp[i,0]*s[1], -dIdp[i,1]*s[0], -dIdp[i,1]*s[2],
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3, -dIdp[i,2]*s[1], -dIdp[i,2]*s[0], -dIdp[i,0]*s[2],
dIdp[i,3]*s4, dIdp[i,4]*s5, dIdp[i,5]*s6 ] for i in xrange(3)]) dIdp[i,3]*s[3], dIdp[i,4]*s[4], dIdp[i,5]*s[5] ] for i in range(3)])
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(num)]).T return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in range(num)]).T
def invariant(sigmas): def invariant(sigmas):
I = np.zeros(3) I = np.zeros(3)
@ -194,7 +194,7 @@ class Vegter(object):
refNormals = np.empty([13,2]) refNormals = np.empty([13,2])
refPts[12] = refPtsQtr[0] refPts[12] = refPtsQtr[0]
refNormals[12] = refNormalsQtr[0] refNormals[12] = refNormalsQtr[0]
for i in xrange(3): for i in range(3):
refPts[i] = refPtsQtr[i] refPts[i] = refPtsQtr[i]
refPts[i+3] = refPtsQtr[3-i][::-1] refPts[i+3] = refPtsQtr[3-i][::-1]
refPts[i+6] =-refPtsQtr[i] refPts[i+6] =-refPtsQtr[i]
@ -207,7 +207,7 @@ class Vegter(object):
def _getHingePoints(self): def _getHingePoints(self):
""" """
calculate the hinge point B according to the reference points A,C and the normals n,m Calculate the hinge point B according to the reference points A,C and the normals n,m
refPoints = np.array([[p1_x, p1_y], [p2_x, p2_y]]); refPoints = np.array([[p1_x, p1_y], [p2_x, p2_y]]);
refNormals = np.array([[n1_x, n1_y], [n2_x, n2_y]]) refNormals = np.array([[n1_x, n1_y], [n2_x, n2_y]])
@ -220,7 +220,7 @@ class Vegter(object):
B1 = (m2*(n1*A1 + n2*A2) - n2*(m1*C1 + m2*C2))/(n1*m2-m1*n2) B1 = (m2*(n1*A1 + n2*A2) - n2*(m1*C1 + m2*C2))/(n1*m2-m1*n2)
B2 = (n1*(m1*C1 + m2*C2) - m1*(n1*A1 + n2*A2))/(n1*m2-m1*n2) B2 = (n1*(m1*C1 + m2*C2) - m1*(n1*A1 + n2*A2))/(n1*m2-m1*n2)
return np.array([B1,B2]) return np.array([B1,B2])
return np.array([hingPoint(self.refPts[i:i+2],self.refNormals[i:i+2]) for i in xrange(len(self.refPts)-1)]) return np.array([hingPoint(self.refPts[i:i+2],self.refNormals[i:i+2]) for i in range(len(self.refPts)-1)])
def getBezier(self): def getBezier(self):
def bezier(R,H): def bezier(R,H):
@ -228,7 +228,7 @@ class Vegter(object):
for mu in np.linspace(0.0,1.0,self.nspace): for mu in np.linspace(0.0,1.0,self.nspace):
b.append(np.array(R[0]*np.ones_like(mu) + 2.0*mu*(H - R[0]) + mu**2*(R[0]+R[1] - 2.0*H))) b.append(np.array(R[0]*np.ones_like(mu) + 2.0*mu*(H - R[0]) + mu**2*(R[0]+R[1] - 2.0*H)))
return b return b
return np.array([bezier(self.refPts[i:i+2],self.hingePts[i]) for i in xrange(len(self.refPts)-1)]) return np.array([bezier(self.refPts[i:i+2],self.hingePts[i]) for i in range(len(self.refPts)-1)])
def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0): def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
"""0-pure shear; 1-uniaxial; 2-plane strain; 3-equi-biaxial""" """0-pure shear; 1-uniaxial; 2-plane strain; 3-equi-biaxial"""
@ -238,7 +238,7 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
lmatrix = np.empty([nset,nset]) lmatrix = np.empty([nset,nset])
theta = np.linspace(0.0,np.pi/2,nset) theta = np.linspace(0.0,np.pi/2,nset)
for i,th in enumerate(theta): for i,th in enumerate(theta):
lmatrix[i] = np.array([np.cos(2*j*th) for j in xrange(nset)]) lmatrix[i] = np.array([np.cos(2*j*th) for j in range(nset)])
return np.linalg.solve(lmatrix, r) return np.linalg.solve(lmatrix, r)
nps = len(stress) nps = len(stress)
@ -250,10 +250,10 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
strsSet = stress.reshape(nset,4,2) strsSet = stress.reshape(nset,4,2)
refPts = np.empty([4,2]) refPts = np.empty([4,2])
fouriercoeffs = np.array([np.cos(2.0*i*theta) for i in xrange(nset)]) fouriercoeffs = np.array([np.cos(2.0*i*theta) for i in range(nset)])
for i in xrange(2): for i in range(2):
refPts[3,i] = sum(strsSet[:,3,i])/nset refPts[3,i] = sum(strsSet[:,3,i])/nset
for j in xrange(3): for j in range(3):
refPts[j,i] = np.dot(getFourierParas(strsSet[:,j,i]), fouriercoeffs) refPts[j,i] = np.dot(getFourierParas(strsSet[:,j,i]), fouriercoeffs)
@ -752,9 +752,9 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
(4.0*D[0]-4.0*D[2]-4.0*D[1]+ D[3])*s11 + (8.0*D[1]-2.0*D[3]-2.0*D[0]+2.0*D[2])*s22, (4.0*D[0]-4.0*D[2]-4.0*D[1]+ D[3])*s11 + (8.0*D[1]-2.0*D[3]-2.0*D[0]+2.0*D[2])*s22,
9.0*D[4]*s12 ])/9.0 9.0*D[4]*s12 ])/9.0
def priStrs((sx,sy,sxy)): def priStrs(s):
temp = np.sqrt( (sx-sy)**2 + 4.0*sxy**2 ) temp = np.sqrt( (s[0]-s[1])**2 + 4.0*s[2]**2 )
return 0.5*(sx+sy + temp), 0.5*(sx+sy - temp) return 0.5*(s[0]+s[1] + temp), 0.5*(s[0]+s[1] - temp)
m2 = m/2.0; m21 = m2 - 1.0 m2 = m/2.0; m21 = m2 - 1.0
(X1,X2), (Y1,Y2) = priStrs(X), priStrs(Y) # Principal values of X, Y (X1,X2), (Y1,Y2) = priStrs(X), priStrs(Y) # Principal values of X, Y
phi1s, phi21s, phi22s = (X1-X2)**2, (2.0*Y2+Y1)**2, (2.0*Y1+Y2)**2 phi1s, phi21s, phi22s = (X1-X2)**2, (2.0*Y2+Y1)**2, (2.0*Y1+Y2)**2
@ -768,10 +768,11 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
drdl, drdm = r/m/left, r*math_ln(0.5*left)*(-1.0/m/m) #/(-m*m) drdl, drdm = r/m/left, r*math_ln(0.5*left)*(-1.0/m/m) #/(-m*m)
dldm = ( phi1*math_ln(phi1s) + phi21*math_ln(phi21s) + phi22*math_ln(phi22s) )*0.5 dldm = ( phi1*math_ln(phi1s) + phi21*math_ln(phi21s) + phi22*math_ln(phi22s) )*0.5
zero = np.zeros_like(s11); num = len(s11) zero = np.zeros_like(s11); num = len(s11)
def dPrincipalds((X1,X2,X12)): # derivative of principla with respect to stress def dPrincipalds(X):
temp = 1.0/np.sqrt( (X1-X2)**2 + 4.0*X12**2 ) """Derivative of principla with respect to stress"""
dP1dsi = 0.5*np.array([ 1.0+temp*(X1-X2), 1.0-temp*(X1-X2), temp*4.0*X12]) temp = 1.0/np.sqrt( (X[0]-X[1])**2 + 4.0*X[2]**2 )
dP2dsi = 0.5*np.array([ 1.0-temp*(X1-X2), 1.0+temp*(X1-X2), -temp*4.0*X12]) dP1dsi = 0.5*np.array([ 1.0+temp*(X[0]-X[1]), 1.0-temp*(X[0]-X[1]), temp*4.0*X[2]])
dP2dsi = 0.5*np.array([ 1.0-temp*(X[0]-X[1]), 1.0+temp*(X[0]-X[1]), -temp*4.0*X[2]])
return np.array([dP1dsi, dP2dsi]) return np.array([dP1dsi, dP2dsi])
dXdXi, dYdYi = dPrincipalds(X), dPrincipalds(Y) dXdXi, dYdYi = dPrincipalds(X), dPrincipalds(Y)
@ -782,14 +783,14 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
[ 4.0*s11-2.0*s22, -4.0*s11+8.0*s22, -4.0*s11+2.0*s22, s11-2.0*s22, zero ], #dY22dD [ 4.0*s11-2.0*s22, -4.0*s11+8.0*s22, -4.0*s11+2.0*s22, s11-2.0*s22, zero ], #dY22dD
[ zero, zero, zero, zero, 9.0*s12 ] ])/9.0 #dY12dD [ zero, zero, zero, zero, 9.0*s12 ] ])/9.0 #dY12dD
dXdC=np.array([np.dot(dXdXi[:,:,i], dXidC[:,:,i]).T for i in xrange(num)]).T dXdC=np.array([np.dot(dXdXi[:,:,i], dXidC[:,:,i]).T for i in range(num)]).T
dYdD=np.array([np.dot(dYdYi[:,:,i], dYidD[:,:,i]).T for i in xrange(num)]).T dYdD=np.array([np.dot(dYdYi[:,:,i], dYidD[:,:,i]).T for i in range(num)]).T
dldX = m*np.array([ phi1s**m21*(X1-X2), phi1s**m21*(X2-X1)]) dldX = m*np.array([ phi1s**m21*(X1-X2), phi1s**m21*(X2-X1)])
dldY = m*np.array([phi21s**m21*(2.0*Y2+Y1) + 2.0*phi22s**m21*(2.0*Y1+Y2), \ dldY = m*np.array([phi21s**m21*(2.0*Y2+Y1) + 2.0*phi22s**m21*(2.0*Y1+Y2), \
phi22s**m21*(2.0*Y1+Y2) + 2.0*phi21s**m21*(2.0*Y2+Y1) ]) phi22s**m21*(2.0*Y1+Y2) + 2.0*phi21s**m21*(2.0*Y2+Y1) ])
jC = drdl*np.array([np.dot(dldX[:,i], dXdC[:,:,i]) for i in xrange(num)]).T jC = drdl*np.array([np.dot(dldX[:,i], dXdC[:,:,i]) for i in range(num)]).T
jD = drdl*np.array([np.dot(dldY[:,i], dYdD[:,:,i]) for i in xrange(num)]).T jD = drdl*np.array([np.dot(dldY[:,i], dYdD[:,:,i]) for i in range(num)]).T
jm = drdl*dldm + drdm jm = drdl*dldm + drdm
if mFix[0]: return np.vstack((jC,jD)).T if mFix[0]: return np.vstack((jC,jD)).T
@ -817,7 +818,7 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
p,q = ys(sdev, C), ys(sdev, D) p,q = ys(sdev, C), ys(sdev, D)
pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort
m2 = m/2.0; x3 = xrange(3); num = len(sv) m2 = m/2.0; x3 = range(3); num = len(sv)
PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3]) PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3])
QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,num) QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,num)
PiQjs = PiQj**2 PiQjs = PiQj**2
@ -831,8 +832,8 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
dldm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5 dldm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5
dPdc, dQdd = principalStrs_Der(p, sdev, dim), principalStrs_Der(q, sdev, dim) dPdc, dQdd = principalStrs_Der(p, sdev, dim), principalStrs_Der(q, sdev, dim)
PiQjs3d = ( PiQjs**(m2-1.0) ).reshape(3,3,num) PiQjs3d = ( PiQjs**(m2-1.0) ).reshape(3,3,num)
dldP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in xrange(num)]).T dldP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in range(num)]).T
dldQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in xrange(num)]).T dldQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in range(num)]).T
jm = drdl*dldm + drdm jm = drdl*dldm + drdm
jc = drdl*np.sum([dldP[i]*dPdc[i] for i in x3],axis=0) jc = drdl*np.sum([dldP[i]*dPdc[i] for i in x3],axis=0)
@ -851,9 +852,9 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
0<c<1, m are optional 0<c<1, m are optional
criteria are invalid input criteria are invalid input
""" """
ks = lambda (s1,s2,s3,s4,s5,s6),(c1,c2,c3,c4,c5,c6): np.array( [ ks = lambda s,c: np.array( [
((c2+c3)*s1-c3*s2-c2*s3)/3.0, ((c3+c1)*s2-c3*s1-c1*s3)/3.0, ((c[1]+c[2])*s[0]-c[2]*s[1]-c[1]*s[2])/3.0, ((c[2]+c[0])*s[1]-c[2]*s[0]-c[0]*s[2])/3.0,
((c1+c2)*s3-c2*s1-c1*s2)/3.0, c4*s4, c5*s5, c6*s6 ]) ((c[0]+c[1])*s[2]-c[1]*s[0]-c[0]*s[1])/3.0, c[3]*s[3], c[4]*s[4], c[5]*s[5] ])
if dim == 2: C1,c = np.append(paras[0:4],[0.0,0.0]), paras[4] if dim == 2: C1,c = np.append(paras[0:4],[0.0,0.0]), paras[4]
else: C1,c = paras[0:6], paras[6] else: C1,c = paras[0:6], paras[6]
if mFix[0]: m = mFix[1] if mFix[0]: m = mFix[1]
@ -887,7 +888,7 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
dldP = (1.0-c)*dphi1dP + c*dphi2dP*rm2 dldP = (1.0-c)*dphi1dP + c*dphi2dP*rm2
jm = drdl * dldm + drdm #drda*(-1.0/m/m) jm = drdl * dldm + drdm #drda*(-1.0/m/m)
jc1 = drdl * np.sum([dldP[i]*dPdc[i] for i in xrange(3)],axis=0) jc1 = drdl * np.sum([dldP[i]*dPdc[i] for i in range(3)],axis=0)
jc = drdl * (-phi1 + rm2*phi2) jc = drdl * (-phi1 + rm2*phi2)
if mFix[0]: return np.vstack((jc1,jc)).T if mFix[0]: return np.vstack((jc1,jc)).T
@ -1029,7 +1030,7 @@ thresholdParameter = ['totalshear','equivalentStrain']
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Loadcase(): class Loadcase():
"""generating load cases for the spectral solver""" """Generating load cases for the spectral solver"""
def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False): def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False):
self.finalStrain = finalStrain self.finalStrain = finalStrain
@ -1098,10 +1099,10 @@ class Loadcase():
' time %s'%self.time ' time %s'%self.time
def _vegterLoadcase(self): def _vegterLoadcase(self):
"""generate the stress points for Vegter criteria (incomplete/untested)""" """Generate the stress points for Vegter criteria (incomplete/untested)"""
theta = np.linspace(0.0,np.pi/2.0,self.nSet) theta = np.linspace(0.0,np.pi/2.0,self.nSet)
f = [0.0, 0.0, '*']*3; loadcase = [] f = [0.0, 0.0, '*']*3; loadcase = []
for i in xrange(self.nSet*4): loadcase.append(f) for i in range(self.nSet*4): loadcase.append(f)
# more to do for F # more to do for F
F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension
@ -1111,12 +1112,12 @@ class Loadcase():
]) ])
for i,t in enumerate(theta): for i,t in enumerate(theta):
R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2) R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2)
for j in xrange(4): for j in range(4):
loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4) loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4)
return loadcase return loadcase
def _getLoadcase2dRandom(self): def _getLoadcase2dRandom(self):
"""generate random stress points for 2D tests""" """Generate random stress points for 2D tests"""
self.NgeneratedLoadCases+=1 self.NgeneratedLoadCases+=1
defgrad=['0', '0', '*']*3 defgrad=['0', '0', '*']*3
stress =['*', '*', '0']*3 stress =['*', '*', '0']*3
@ -1279,7 +1280,7 @@ def doSim(thread):
if l not in table.labels(raw = True): damask.util.croak('%s not found'%l) if l not in table.labels(raw = True): damask.util.croak('%s not found'%l)
s.release() s.release()
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)]) table.data_readArray(['%i_Cauchy'%(i+1) for i in range(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in range(9)])
validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold
yieldStress = np.empty((int(options.yieldValue[2]),6),'d') yieldStress = np.empty((int(options.yieldValue[2]),6),'d')