renamed TPMS and added more from additional references
This commit is contained in:
parent
54e4943353
commit
a59e64a8e4
|
@ -120,6 +120,29 @@ class Geom:
|
|||
return np.unique(self.material).size
|
||||
|
||||
|
||||
@staticmethod
|
||||
def load(fname):
|
||||
"""
|
||||
Read a VTK rectilinear grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str or or pathlib.Path
|
||||
Geometry file to read.
|
||||
Valid extension is .vtr, it will be appended if not given.
|
||||
|
||||
"""
|
||||
v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr')
|
||||
comments = v.get_comments()
|
||||
grid = np.array(v.vtk_data.GetDimensions())-1
|
||||
bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T
|
||||
|
||||
return Geom(material = v.get('material').reshape(grid,order='F'),
|
||||
size = bbox[1] - bbox[0],
|
||||
origin = bbox[0],
|
||||
comments=comments)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def load_ASCII(fname):
|
||||
"""
|
||||
|
@ -184,29 +207,6 @@ class Geom:
|
|||
return Geom(material.reshape(grid,order='F'),size,origin,comments)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def load(fname):
|
||||
"""
|
||||
Read a VTK rectilinear grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str or or pathlib.Path
|
||||
Geometry file to read.
|
||||
Valid extension is .vtr, it will be appended if not given.
|
||||
|
||||
"""
|
||||
v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr')
|
||||
comments = v.get_comments()
|
||||
grid = np.array(v.vtk_data.GetDimensions())-1
|
||||
bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T
|
||||
|
||||
return Geom(material = v.get('material').reshape(grid,order='F'),
|
||||
size = bbox[1] - bbox[0],
|
||||
origin = bbox[0],
|
||||
comments=comments)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _find_closest_seed(seeds, weights, point):
|
||||
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
|
||||
|
@ -292,10 +292,52 @@ class Geom:
|
|||
)
|
||||
|
||||
|
||||
_minimal_surface = \
|
||||
{'Schwarz P': lambda x,y,z: np.cos(x) + np.cos(y) + np.cos(z),
|
||||
'Double Primitive': lambda x,y,z: ( 0.5 * (np.cos(x)*np.cos(y) + np.cos(y)*np.cos(z) + np.cos(z)*np.cos(x))
|
||||
+ 0.2 * (np.cos(2*x) + np.cos(2*y) + np.cos(2*z)) ),
|
||||
'Schwarz D': lambda x,y,z: ( np.sin(x)*np.sin(y)*np.sin(z)
|
||||
+ np.sin(x)*np.cos(y)*np.cos(z)
|
||||
+ np.cos(x)*np.cos(y)*np.sin(z)
|
||||
+ np.cos(x)*np.sin(y)*np.cos(z) ),
|
||||
'Complementary D': lambda x,y,z: ( np.cos(3*x+y)*np.cos(z) - np.sin(3*x-y)*np.sin(z) + np.cos(x+3*y)*np.cos(z)
|
||||
+ np.sin(x-3*y)*np.sin(z) + np.cos(x-y)*np.cos(3*z) - np.sin(x+y)*np.sin(3*z) ),
|
||||
'Double Diamond': lambda x,y,z: 0.5 * (np.sin(x)*np.sin(y)
|
||||
+ np.sin(y)*np.sin(z)
|
||||
+ np.sin(z)*np.sin(x)
|
||||
+ np.cos(x) * np.cos(y) * np.cos(z) ),
|
||||
'Dprime': lambda x,y,z: 0.5 * ( np.cos(x)*np.cos(y)*np.cos(z)
|
||||
+ np.cos(x)*np.sin(y)*np.sin(z)
|
||||
+ np.sin(x)*np.cos(y)*np.sin(z)
|
||||
+ np.sin(x)*np.sin(y)*np.cos(z)
|
||||
- np.sin(2*x)*np.sin(2*y)
|
||||
- np.sin(2*y)*np.sin(2*z)
|
||||
- np.sin(2*z)*np.sin(2*x) ) - 0.2,
|
||||
'Gyroid': lambda x,y,z: np.cos(x)*np.sin(y) + np.cos(y)*np.sin(z) + np.cos(z)*np.sin(x),
|
||||
'Gprime': lambda x,y,z : ( np.sin(2*x)*np.cos(y)*np.sin(z)
|
||||
+ np.sin(2*y)*np.cos(z)*np.sin(x)
|
||||
+ np.sin(2*z)*np.cos(x)*np.sin(y) ) + 0.32,
|
||||
'Karcher K': lambda x,y,z: ( 0.3 * ( np.cos(x) + np.cos(y) + np.cos(z)
|
||||
+ np.cos(x)*np.cos(y) + np.cos(y)*np.cos(z) + np.cos(z)*np.cos(x) )
|
||||
- 0.4 * ( np.cos(2*x) + np.cos(2*y) + np.cos(2*z) ) ) + 0.2,
|
||||
'Lidinoid': lambda x,y,z: 0.5 * ( np.sin(2*x)*np.cos(y)*np.sin(z)
|
||||
+ np.sin(2*y)*np.cos(z)*np.sin(x)
|
||||
+ np.sin(2*z)*np.cos(x)*np.sin(y)
|
||||
- np.cos(2*x)*np.cos(2*y)
|
||||
- np.cos(2*y)*np.cos(2*z)
|
||||
- np.cos(2*z)*np.cos(2*x) ) + 0.15,
|
||||
'Neovius': lambda x,y,z: ( 3 * (np.cos(x)+np.cos(y)+np.cos(z))
|
||||
+ 4 * np.cos(x)*np.cos(y)*np.cos(z) ),
|
||||
'Fisher-Koch S': lambda x,y,z: ( np.cos(2*x)*np.sin( y)*np.cos( z)
|
||||
+ np.cos( x)*np.cos(2*y)*np.sin( z)
|
||||
+ np.sin( x)*np.cos( y)*np.cos(2*z) ),
|
||||
}
|
||||
|
||||
|
||||
@staticmethod
|
||||
def from_minimal_surface(grid,size,surface,threshold=0.0,periods=1,materials=(1,2)):
|
||||
"""
|
||||
Generate geometry from definition of minimal surface.
|
||||
Generate geometry from definition of triply periodic minimal surface.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -303,7 +345,7 @@ class Geom:
|
|||
Number of grid points in x,y,z direction.
|
||||
size : list or numpy.ndarray of shape (3)
|
||||
Physical size of the geometry in meter.
|
||||
surface : {'primitive', 'gyroid', 'diamond'}
|
||||
surface : {'primitive', 'gyroid', 'lidinoid', 'neovius', 'diamond', 'doublediamond'}
|
||||
Type of the minimal surface.
|
||||
threshold : float, optional.
|
||||
Threshold of the minimal surface. Defaults to 0.0.
|
||||
|
@ -312,21 +354,53 @@ class Geom:
|
|||
materials : (int, int), optional
|
||||
Material IDs. Defaults to (1,2).
|
||||
|
||||
References
|
||||
----------
|
||||
Surface curvature in triply-periodic minimal surface architectures as
|
||||
a distinct design parameter in preparing advanced tissue engineering scaffolds
|
||||
Sébastien B G Blanquer, Maike Werner, Markus Hannula, Shahriar Sharifi,
|
||||
Guillaume P R Lajoinie, David Eglin, Jari Hyttinen, André A Poot, and Dirk W Grijpma
|
||||
10.1088/1758-5090/aa6553
|
||||
|
||||
Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries
|
||||
Meinhard Wohlgemuth, Nataliya Yufa, James Hoffman, and Edwin L. Thomas
|
||||
10.1021/ma0019499
|
||||
|
||||
Minisurf – A minimal surface generator for finite element modeling and additive manufacturing
|
||||
Meng-Ting Hsieh, Lorenzo Valdevit
|
||||
10.1016/j.simpa.2020.100026
|
||||
|
||||
"""
|
||||
s = {'primitive': lambda x,y,z: np.cos(x)+np.cos(y)+np.cos(z),
|
||||
'gyroid': lambda x,y,z: np.sin(x)*np.cos(y)+np.sin(y)*np.cos(z)+np.cos(x)*np.sin(z),
|
||||
'diamond': lambda x,y,z: np.cos(x-y)*np.cos(z)+np.sin(x+y)*np.sin(z),
|
||||
}
|
||||
x,y,z = np.meshgrid(periods*2.0*np.pi*(np.arange(grid[0])+0.5)/grid[0],
|
||||
periods*2.0*np.pi*(np.arange(grid[1])+0.5)/grid[1],
|
||||
periods*2.0*np.pi*(np.arange(grid[2])+0.5)/grid[2],
|
||||
indexing='ij',sparse=True)
|
||||
return Geom(material = np.where(threshold < s[surface](x,y,z),materials[1],materials[0]),
|
||||
return Geom(material = np.where(threshold < Geom._minimal_surface[surface](x,y,z),materials[1],materials[0]),
|
||||
size = size,
|
||||
comments = util.execution_stamp('Geom','from_minimal_surface'),
|
||||
)
|
||||
|
||||
|
||||
def save(self,fname,compress=True):
|
||||
"""
|
||||
Generates vtk rectilinear grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str, optional
|
||||
Filename to write. If no file is given, a string is returned.
|
||||
Valid extension is .vtr, it will be appended if not given.
|
||||
compress : bool, optional
|
||||
Compress with zlib algorithm. Defaults to True.
|
||||
|
||||
"""
|
||||
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
|
||||
v.add(self.material.flatten(order='F'),'material')
|
||||
v.add_comments(self.comments)
|
||||
|
||||
v.save(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr',parallel=False,compress=compress)
|
||||
|
||||
|
||||
def save_ASCII(self,fname,compress=None):
|
||||
"""
|
||||
Writes a geom file.
|
||||
|
@ -399,26 +473,6 @@ class Geom:
|
|||
f.write(f'{reps} of {former}\n')
|
||||
|
||||
|
||||
def save(self,fname,compress=True):
|
||||
"""
|
||||
Generates vtk rectilinear grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str, optional
|
||||
Filename to write. If no file is given, a string is returned.
|
||||
Valid extension is .vtr, it will be appended if not given.
|
||||
compress : bool, optional
|
||||
Compress with zlib algorithm. Defaults to True.
|
||||
|
||||
"""
|
||||
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
|
||||
v.add(self.material.flatten(order='F'),'material')
|
||||
v.add_comments(self.comments)
|
||||
|
||||
v.save(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr',parallel=False,compress=compress)
|
||||
|
||||
|
||||
def show(self):
|
||||
"""Show on screen."""
|
||||
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
|
||||
|
|
|
@ -362,7 +362,19 @@ class TestGeom:
|
|||
assert np.all(geom.material == material)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('surface',['primitive','gyroid','diamond'])
|
||||
@pytest.mark.parametrize('surface',['Schwarz P',
|
||||
'Double Primitive',
|
||||
'Schwarz D',
|
||||
'Complementary D',
|
||||
'Double Diamond',
|
||||
'Dprime',
|
||||
'Gyroid',
|
||||
'Gprime',
|
||||
'Karcher K',
|
||||
'Lidinoid',
|
||||
'Neovius',
|
||||
'Fisher-Koch S',
|
||||
])
|
||||
def test_minimal_surface_basic_properties(self,surface):
|
||||
grid = np.random.randint(60,100,3)
|
||||
size = np.ones(3)+np.random.rand(3)
|
||||
|
@ -373,8 +385,20 @@ class TestGeom:
|
|||
assert geom.material.max() == materials.max() and geom.material.min() == materials.min() \
|
||||
and (geom.size == size).all() and (geom.grid == grid).all()
|
||||
|
||||
@pytest.mark.parametrize('surface',['primitive','gyroid','diamond'])
|
||||
def test_minimal_surface_volume(self,surface):
|
||||
grid = np.ones(3,dtype='i')*64
|
||||
geom = Geom.from_minimal_surface(grid,np.ones(3),surface)
|
||||
assert np.isclose(np.count_nonzero(geom.material==1)/np.prod(geom.grid),.5)
|
||||
@pytest.mark.parametrize('surface,threshold',[('Schwarz P',0),
|
||||
('Double Primitive',-1./6.),
|
||||
('Schwarz D',0),
|
||||
('Complementary D',0),
|
||||
('Double Diamond',-0.133),
|
||||
('Dprime',-0.0395),
|
||||
('Gyroid',0),
|
||||
('Gprime',0.22913),
|
||||
('Karcher K',0.17045),
|
||||
('Lidinoid',0.14455),
|
||||
('Neovius',0),
|
||||
('Fisher-Koch S',0),
|
||||
])
|
||||
def test_minimal_surface_volume(self,surface,threshold):
|
||||
grid = np.ones(3,dtype=int)*64
|
||||
geom = Geom.from_minimal_surface(grid,np.ones(3),surface,threshold)
|
||||
assert np.isclose(np.count_nonzero(geom.material==1)/np.prod(geom.grid),.5,rtol=1e-3)
|
||||
|
|
Loading…
Reference in New Issue