LAPACK version as backup when analytic eigenvalues fail
This commit is contained in:
parent
dc1e8f9def
commit
a56f720e36
|
@ -1936,8 +1936,8 @@ end subroutine math_spectralDecompositionSym
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief eigenvalues and eigenvectors of symmetric 3x3 matrix m using an analytical expression
|
||||
!> and the general LAPACK powered version as fallback
|
||||
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
|
||||
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
|
||||
!> @author Joachim Kopp, Max–Planck–Institut für Kernphysik, Heidelberg (Copyright (C) 2006)
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
|
||||
|
@ -1958,7 +1958,7 @@ subroutine math_spectralDecompositionSym33(m,values,vectors)
|
|||
m(1, 2)**2_pInt]
|
||||
|
||||
T = maxval(abs(values))
|
||||
U = MAX(T, T**2_pInt)
|
||||
U = max(T, T**2_pInt)
|
||||
threshold = sqrt(5.0e-14_pReal * U**2_pInt)
|
||||
|
||||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||||
|
@ -2051,35 +2051,35 @@ end function math_eigenvaluesSym
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Eigenvalues of symmetric 33 matrix m
|
||||
!> @brief eigenvalues of symmetric 33 matrix m using an analytical expression
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @details similar to http://arxiv.org/abs/physics/0610206 (DSYEVC3)
|
||||
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
|
||||
!> matrices as fallback
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_eigenvaluesSym33(m)
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(3,3) :: m
|
||||
real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
|
||||
real(pReal) :: R, S, T, P, Q, rho, phi
|
||||
real(pReal) :: P, Q, rho, phi
|
||||
real(pReal), parameter :: TOL=1.e-14_pReal
|
||||
|
||||
invariants = math_invariantsSym33(m)
|
||||
|
||||
R=-invariants(1)
|
||||
S= invariants(2)
|
||||
T=-invariants(3)
|
||||
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
|
||||
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
|
||||
|
||||
P=S-R**2.0_pReal/3.0_pReal
|
||||
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
||||
|
||||
if((abs(P) < TOL) .and. (abs(Q) < TOL)) then
|
||||
math_eigenvaluesSym33 = invariants(1)/3.0_pReal
|
||||
if(any(abs([p,q]) < TOL)) then
|
||||
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
|
||||
else
|
||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||
phi=acos(math_limit(-Q/rho/2.0_pReal,-1.0_pReal,1.0_pReal))
|
||||
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||
[cos(phi/3.0_pReal), &
|
||||
cos(phi/3.0_pReal+2.0_pReal/3.0_pReal*PI), &
|
||||
cos(phi/3.0_pReal+4.0_pReal/3.0_pReal*PI) &
|
||||
] -R/3.0_pReal
|
||||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||||
cos((phi+4.0_pReal*PI)/3.0_pReal) &
|
||||
] + invariants(1)/3.0_pReal
|
||||
endif
|
||||
end function math_eigenvaluesSym33
|
||||
|
||||
|
|
Loading…
Reference in New Issue