LAPACK version as backup when analytic eigenvalues fail

This commit is contained in:
Martin Diehl 2016-02-02 18:59:04 +01:00
parent dc1e8f9def
commit a56f720e36
1 changed files with 18 additions and 18 deletions

View File

@ -1936,8 +1936,8 @@ end subroutine math_spectralDecompositionSym
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric 3x3 matrix m using an analytical expression !> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
!> and the general LAPACK powered version as fallback !> and the general LAPACK powered version for arbritrary sized matrices as fallback
!> @author Joachim Kopp, MaxPlanckInstitut für Kernphysik, Heidelberg (Copyright (C) 2006) !> @author Joachim Kopp, MaxPlanckInstitut für Kernphysik, Heidelberg (Copyright (C) 2006)
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3) !> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
@ -1958,7 +1958,7 @@ subroutine math_spectralDecompositionSym33(m,values,vectors)
m(1, 2)**2_pInt] m(1, 2)**2_pInt]
T = maxval(abs(values)) T = maxval(abs(values))
U = MAX(T, T**2_pInt) U = max(T, T**2_pInt)
threshold = sqrt(5.0e-14_pReal * U**2_pInt) threshold = sqrt(5.0e-14_pReal * U**2_pInt)
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2 ! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
@ -2051,35 +2051,35 @@ end function math_eigenvaluesSym
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Eigenvalues of symmetric 33 matrix m !> @brief eigenvalues of symmetric 33 matrix m using an analytical expression
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details similar to http://arxiv.org/abs/physics/0610206 (DSYEVC3)
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
!> matrices as fallback
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym33(m) function math_eigenvaluesSym33(m)
implicit none implicit none
real(pReal), intent(in), dimension(3,3) :: m real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3) :: math_eigenvaluesSym33, invariants real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
real(pReal) :: R, S, T, P, Q, rho, phi real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal real(pReal), parameter :: TOL=1.e-14_pReal
invariants = math_invariantsSym33(m) invariants = math_invariantsSym33(m)
R=-invariants(1) P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
S= invariants(2) Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
T=-invariants(3)
P=S-R**2.0_pReal/3.0_pReal if(any(abs([p,q]) < TOL)) then
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T math_eigenvaluesSym33 = math_eigenvaluesSym(m)
if((abs(P) < TOL) .and. (abs(Q) < TOL)) then
math_eigenvaluesSym33 = invariants(1)/3.0_pReal
else else
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho/2.0_pReal,-1.0_pReal,1.0_pReal)) phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), & [cos(phi/3.0_pReal), &
cos(phi/3.0_pReal+2.0_pReal/3.0_pReal*PI), & cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos(phi/3.0_pReal+4.0_pReal/3.0_pReal*PI) & cos((phi+4.0_pReal*PI)/3.0_pReal) &
] -R/3.0_pReal ] + invariants(1)/3.0_pReal
endif endif
end function math_eigenvaluesSym33 end function math_eigenvaluesSym33